Characterization of subclass A1 heat stress transcription factors in tomato

  • Heat stress transcription factors (Hsfs) have an essential role in heat stress response (HSR) and thermotolerance by controlling the expression of hundreds of genes including heat shock proteins (Hsps) with molecular chaperone functions. Hsf family in plants shows a striking multiplicity, with more than 20 members in many species. In Solanum lycopersicum HsfA1a was reported to act as the master regulator of the onset of HSR and therefore is essential for basal thermotolerance. Evidence for this was provided by the analysis of HsfA1a co-suppression (A1CS) transgenic plants, which exhibited hypersensitivity upon exposure to heat stress (HS) due to the inability of the plants to induce the expression of many HS-genes including HsfA2, HsfB1 and several Hsps. Completion of tomato genome sequencing allowed the completion of the Hsf inventory, which is consisted of 27 members, including another three HsfA1 genes, namely HsfA1b, HsfA1c and HsfA1e. Consequently, the suppression effect of the short interference RNA in A1CS lin e was re-evaluated for all HsfA1 genes. We found that expression of all HsfA1 proteins was suppressed in A1CS protoplasts. This result suggested that the model of single master regulator needs to be re-examined. Expression analysis revealed that HsfA1a is constitutively expressed in different tissues and in response to HS, while HsfA1c and HsfA1e are minimally expressed in general, and show an induction during fruit ripening and a weak upregulation in late HSR. Instead HsfA1b shows preferential expression in specific tissues and is strongly and rapidly induced in response to HS. At the protein level HsfA1b and HsfA1e are rapidly degraded while HsfA1a and HsfA1c show a higher stability. In addition, HsfA1a and HsfA1c show a nucleocytosolic distribution, while HsfA1b and HsfA1e a strong nuclear retention. A major property of a master regulator in HSR is thought to be its ability to cause a strong transactivation of a wide range of genes required for the initial activation of protective mechanisms. GUS reporter assays as well as analysis of transcript levels of several endogenous transcripts in protoplasts transiently expressing HsfA1 proteins revealed that HsfA1a can stimulate the transcription of many genes, while the other Hsfs have weaker activity and only on limited set of target genes. The low activity of HsfA1c and HsfA1e can be attributed to the lower DNA capacity of the two factors as judged by a GUS reporter repressor assay. HsfA1a has been shown to have synergistic activity with the stress induced HsfA2 and HsfB1. The formation of such complexes is considered as important for stimulation of transcription and long term stress adaptation. All HsfA1 members show synergistic activity with HsfA2, while only HsfA1a act as co-activator of HsfB1 and HsfA7. Interestingly, HsfA1b shows an exceptional synergistic activity with HsfA3, suggesting that different Hsf complexes might regulate different HS-related gene networks. Altogether these results suggest that HsfA1a has unique characteristics within HsfA1 subfamily. This result is interesting considering the very high sequencing similarity among HsfA1s, and particularly among HsfA1a and HsfA1c. To understand the molecular basis of this discrepancy, a series of domain swapping mutants between HsfA1a and HsfA1c were generated. Oligomerization domain and C-terminal swaps did not affect the basal activity or co-activity of the proteins. Remarkably, an HsfA1a mutant harbouring the N-terminus of HsfA1c shows reduced activity and co-activity, while the reciprocal HsfA1c with the N-terminus of HsfA1a cause a gain of activity and enhanced DNA binding capacity. Sequence analysis of the DBD of HsfA1 proteins revealed a divergence in the highly conserved C-terminus of the turn of β3-β4 sheet. As the vast majority of HsfA1 proteins, HsfA1a at this position comprises an Arg residue (R107), while HsfA1c a Leu and HsfA1e a Cys. An HsfA1a-R107L mutant has reduced DNA binding capacity and consequently activity. Therefore, the results presented here point to the essential function of this amino acid residue for DNA binding function. Interestingly, the mutation did not affect the activity of the protein on Hsp70-1, suggesting that the functionality of the DBD and consequently the transcription factor on different promoters with variable heat stress element number and architecture is dependent on structural peculiarities of the DBD. In conclusion, the unique properties including expression pattern, transcriptional activities, stability, DBD-peculiarities are likely responsible for the dominant function of HsfA1a as a master regulator of HSR in tomato. Instead, other HsfA1-members are only participating in HSR or developmental regulations by regulating a specific set of genes. Furthermore, HsfA1b and HsfA1e are likely function as stress primers in specific tissues while HsfA1c as a co-regulator in mild HSR. Thereby, tomato subclass A1 presents another example of function diversity not only within the Hsf family but also within the Hsf-subfamily of closely related members. The diversification based on DBD peculiarities is likely to occur in potato as well. Therefore this might have eliminated the functional redundancy observed in other species such as Arabidopsis thaliana but has probably allowed the more refined regulation of Hsf networks possibly under different stress regimes, tissues and cell types.

Download full text files

Export metadata

Metadaten
Author:Asmaa Samir Attia El-Shershaby
URN:urn:nbn:de:hebis:30:3-492965
Place of publication:Frankfurt am Main
Referee:Enrico SchleiffORCiDGND, Claudia Büchel
Advisor:Sotirios Fragkostefanakis
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/05/03
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/02/28
Release Date:2019/03/07
Page Number:75
HeBIS-PPN:445845597
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht