Creation of cellular models and functional investigation of PARK2 Copy Number Variants (CNVs) associated with Attention-Deficit/Hyperactivity Disorder (ADHD)

  • BACKGROUND: Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders worldwide. As described in the DSM-5, ADHD is clinically heterogeneous with three main subtypes; predominant hyperactive, predominant attention deficit and combined. The severity of symptoms widely differs among the patients and interferes with the person functioning, negatively impacting social and occupational activities (American Psychiatric Association, 2013). Despite the many efforts, the etiology of the disorder is still unclear. Therefore, there is an increasing demand of models that would help elucidating the causative mechanisms of the disorder and, in parallel, would be valuable tools to discover new and effective treatments. The main goal of the study is the identification of disease specific cellular phenotypes related to Attention-Deficit/Hyperactivity Disorder (ADHD) in cellular models from patients carrying rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD (Elia et al., 2010; Jarick et al., 2014). METHODS: Human dermal fibroblast (HDF) cultures were obtained from skin punches and reprogrammed into human induced pluripotent stem cells (HiPSC) and successively induced to differentiate into HiPSC-derived dopaminergic neurons. Both HiPSC and HiPSC-derived neurons, were proven to be bona fide models by morphological analysis, RT-PCR, RT-qPCR, immunofluorescence, embryoid body assay, molecular karyotyping and dopamine level quantification. A total of six donors were selected for HiPSC and dopaminergic neuron generation: 3 adult ADHD PARK2 CNV risk carriers (1 duplication and 2 deletion carriers, 1 ADHD non-risk CNV variant carrier and 2 healthy controls). We conducted stress-response experiments (nutrient deprivation and CCCP administration) that are well known to increase PARK2 expression, on both fibroblasts and HiPSC. After assessing PARK2 gene and protein expression levels, we evaluated the gene expression of genes that are involved with different processes orchestrated by PARK2. We then performed a series of assays with a special focus on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, ROS abundance) and evaluated changing in the mitochondrial network morphology. To evaluate the effect of nicotine exposure, one of the best replicated prenatal risk factors for having a child later on diagnosed with ADHD, we treated HiPSC-derived dopaminergic neurons with smoking-relevant nicotine concentrations and evaluated PARK2 protein expression after treatment and gene expression by RNA sequencing. RESULTS: The cell models created in this study passed all the characterization tests required to assess whether the lines can be considered bona fide models without underling genotype differences. The evaluation of patho-phenotypes connected with ADHD/PARK2 CNVs in HDF and HIPSC showed that, although PARK2 gene expression was unchanged, ADHD/PARK2 CNV carriers show different PARK2 protein levels possibly implying the presence of different post-transcriptional processes. ADHD/PARK2 CNV carriers show lower levels of ATP production and basal oxygen consumption rates compared to controls, a result in line with what was already reported in ADHD cybrids cells model (Verma et al., 2016). Our experiments indicate that both the amount of reactive oxygen species (ROS) and the mitochondrial network morphology is influenced by the treatment but not by the genotype. The evaluation of nicotine effects on HiPSC-derived dopaminergic neuron from aADHD patients showed no effects on PARK2 protein levels and gene expression. ADHD/PARK2 CNVs carriers show gene ontology enrichment in modules connected with the regulation of cell growth after nicotine acute treatment. Additionally, genes connected with energy production & oxidative stress response and extracellular matrix & cell adhesion were significantly differentially expressed after nicotine treatments. CONCLUSIONS: This study points out the presence of impairment of mitochondrial energetics in cellular models derived from adult ADHD patients carrying rare CNVs within the PARK2 locus. In the last years, several studies have linked mitochondrial impairments to the etiology of psychiatric and neurodevelopmental disorders (McCann & Ross, 2018) and reported an overall increase of oxidative stress or insufficient response to oxidative damage both in children and adults with ADHD (Joseph, Zhang-James, Perl, & Faraone, 2015; Lopresti, 2015). Additionally, different groups have underlined an abnormal brain connectivity in ADHD patients in their work (Gehricke et al., 2017). Our preliminary investigation of the effects of a well-known prenatal risk factor for ADHD, nicotine gestation exposure, point out a susceptibility of the PARK2 CNVs carriers in processes involved in regulation of cell growth and in proteins connected with extracellular matrix composition and cell-adhesion molecules, all factors necessary for neuronal maturation and formation of proper neural connections (Washbourne et al., 2004). In conclusion, this study presents novel and fully validated cellular model systems to study the etiopathogenesis of ADHD based on rare CNVs in the PARK2 locus. Moreover, the identification of disease-relevant phenotypes in the model might be helpful in the future for testing new alternative medications.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Viola Stella Palladino
Place of publication:Frankfurt am Main
Referee:Michaela Müller-McNicollORCiD, Andreas ReifORCiDGND
Document Type:Doctoral Thesis
Year of Completion:2019
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/05/09
Release Date:2019/05/16
Page Number:xv, 141
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht