Analysis of functional cross-protomer contacts in green proteorhodopsin oligomers by DNP-enhanced solid-state NMR

  • The membrane protein Green Proteorhodopsin (GPR), found in an uncultured marine γ-proteobacterium, is a retinal binding protein and contains a conserved structure of seven transmembrane helices (A-G). The retinal is bound to a conserved lysine residue (K231) in helix G via Schiff base linkage. It belongs to the widespread family of microbial rhodopsins and functions as a light dependent outward proton pump that bacteria may utilize for establishing a proton gradient across the cellular membrane. Proton pumping takes place after photon absorption, where GPR goes through a series of conformational changes, termed photocycle, causing the proton to be transported across the cellular membrane from the intra-cellular to the extracellular space. It is further mediated by the highly conserved functional residues D97 and E108, which function as the primary proton acceptor and primary proton donor for the protonated Schiff base, respectively. Another functionally important residue is the highly conserved H75 in helix B. It forms an intra-molecular cluster with D97 and is responsible for the high pKa value of the primary proton acceptor, stabilized by a direct interaction between D97 and H75. Different Proteorhodopsin variants are globally distributed and colour tuned to their environment, depending on the water depth in which they occur. A single residue in the retinal binding pocket at position 105 is responsible for determining the absorption wavelength of the protein. GPR (from eBAC31A08) contains a leucine at position 105, while BPR (blue proteorhodopsin, from Hot75m4) in deeper waters possesses a glutamine. Although GPR shows 79% sequence identity with BPR, a single amino acid substitution (L105Q) in GPR is able to switch the absorption maximum to the one of BPR. Protein oligomerisation describes the association of subunits (protomers) through non-covalent interactions, forming macromolecular complexes. It is an important structural characteristic of microbial rhodopsins, contributing to structural stability and promoting tight packing of the protomers in the bacterial membrane. GPR was shown to assemble into radially arranged oligomers, mainly pentamers and hexamers. No high resolution crystal structure of the whole GPR complex is available, but the structurally related BPR (Hot75m4) was successfully crystallized, showing pentameric oligomers. The BPR crystal structure model reveals detailed information about complex assembly of the whole proteorhodopsin family. It reveals the oligomeric structures and shows residues that are part of the protomer interfaces, forming cross-protomer contacts, which is valuable information for the elaborate analysis of cross-protomer interactions of GPR oligomers. Based on the knowledge of GPR and BPR oligomeric complexes, the aim of this study is to analyse specific cross-protomer contacts and to characterize the functional role of GPR oligomerisation. This includes the identification of residues, which are part of charged cross-protomer contacts and play an important role for the formation of the GPR oligomeric complex. Furthermore, this study deals with a detailed characterization of a potentially functional cross-protomer triad between the residues D97-H75-W34, which was detected in the BPR structural model. Hereby, the focus lies especially on the functional role H75, which is highly conserved and is positioned in between the primary proton acceptor D97 and W34 across the protomer interface. In summary, this study addresses GPR oligomerisation via specific cross-protomer contacts and its potential role for the functional mechanism of the protein. The fundamental technique used in this study is solid-state NMR. Furthermore, an elaborate characterization of GPR oligomerisation was executed using a variety of biochemical methods and mutational approaches. Solid-state NMR is a powerful biophysical method to analyse membrane proteins in their native lipid environment and can be used to obtain diverse information about structure, molecular dynamics and orientation of the protein in the lipid bilayer. Solid-state NMR naturally has a low sensitivity. In order to detect the low number of spins, DNP signal enhancement is of particular importance in this study. It is exhibited under cryogenic conditions and allows to drastically enhance the solid-state NMR signal by transferring magnetization from highly polarized electrons to the nuclear spins. By applying these methods and techniques on GPR oligomers, this study reveals new insights in specific cross-protomer interactions in the complex. First the oligomeric states of GPR were determined for the specific experimental conditions used in this study. LILBID-MS, BN-PAGE and SEC analysis identified the pentameric state to be dominant for GPR. Furthermore, specific interactions across the protomer interface, which drive GPR oligomerisation, were identified. This was conducted by creating mixed 13C-15N labelled complexes. These mixed complexes show a unique isotope labelling pattern across their protomer interfaces. Solid-state NMR 13C-15N-correlation spectroscopy (TEDOR) was used to identify through-space dipole-dipole couplings, which indicate specific cross-protomer contacts. The results indicated that the residues R51, D52, E50 and T60 are important for GPR oligomerisation, and further analysis via single mutations of these residues showed a severe impact of the GPR oligomerisation behaviour. The functional importance of GPR oligomerisation was analysed by DNP-enhanced solid-state NMR on the cross-protomer D97-H75-W34 triad. The DNP cryogenic conditions allowed to trap GPR in distinct stages of the photocycle. It could be shown that trapping GPR in a specific intermediate leads to a drastic conformational effect for the highly conserved H75 residue. Furthermore, DNP-enhanced solid-state NMR was used to characterize the cross-protomer contact between H75 and W34. Mutations of W34 could show that the cross-protomer interaction is highly important for the functionality of the protein, as negative mutants such as W34E showed a reverse proton transport across the bacterial membrane. In summary this study represents a detailed analysis of GPR cross-protomer interactions and sheds light into the cause and functional importance of oligomeric complex formation in the microbial rhodopsin.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Jakob Maciejko
Place of publication:Frankfurt am Main
Referee:Clemens Glaubitz, Josef WachtveitlORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2019/07/09
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/07/04
Release Date:2019/07/11
Page Number:VIII, 171
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht