The clumped and oxygen isotope compositions of biogenic carbonate archives: kinetic effects and reconstruction of seawater temperatures and seawater δ18O

  • During my PhD, I was applying the clumped isotope technique to modern brachiopods and fossil belemnites, and I conducted methodological work. Carbonate clumped isotope thermometry is a tool to reconstruct carbonate precipitation temperatures. In contrast to oxygen isotope thermometry, i.e., the δ18O-thermometer, the carbonate clumped isotope thermometer does not require an estimate for the oxygen isotope composition of the seawater, as it considers the fractionation of isotopes exclusively amongst carbonate isotopologues. The ∆47 value of a carbonate expresses the abundance of the 13C–18O bond bearing carbonate isotopologue, within the carbonate, relative to its random distribution. In thermodynamic equilibrium, the ∆47 value of a given carbonate is solely a function of the carbonate precipitation temperature. However, kinetic isotope fractionations, i.e., vital effects, driven by diffusion, pH or incomplete oxygen isotope exchange between water and dissolved inorganic carbonate species can cause the carbonate to be precipitated with isotopic compositions that are offset from those predicted for thermodynamic equilibrium. Brachiopods serve as important geochemical archives of past climate conditions. To investigate the nature and significance of kinetic controls on brachiopod shell δ18O and ∆47 values, in collaboration with the BASE-LiNE Earth ITN, I analysed the bulk and clumped isotope compositions of eighteen modern brachiopod shells, collected from different geographic locations and water depths that cover a substantial range of growth temperatures. Growth temperatures and seawater δ18O values for each brachiopod were independently determined. Most of the analysed brachiopods exhibit combined offsets from clumped and oxygen isotope equilibrium, and there is a significant negative correlation between the offset values. The observed correlation slope between offset ∆47 and offset δ18O point to the importance of kinetic effects associated with Knudsen diffusion and incomplete hydration and hydroxylation of CO2 (aq), occurring during biomineralisation. The correlations between the growth rates of the analysed brachiopods and both the offset ∆47 and the offset δ18O values provide further arguments for the presence of kinetic effects. In conclusion, the oxygen and clumped isotope composition of modern brachiopod shells are affected by growth rate-induced kinetic effects that hinder their use for palaeoceanography.

Download full text files

Export metadata

Author:David Bajnai
Place of publication:Frankfurt am Main
Referee:Jens Fiebig, Silke VoigtORCiDGND, Gregory D. Price
Document Type:Doctoral Thesis
Date of Publication (online):2019/07/17
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/07/09
Release Date:2019/08/08
Page Number:x, 158
Institutes:Geowissenschaften / Geographie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoDeutsches Urheberrecht