Transport mechanism of a multidrug resistance protein investigated by pulsed EPR spectroscopy

  • In human several diseases result from malfunctions of ATP-binding cassette (ABC) systems, which form one of the largest transport system superfamily. Many ABC exporters contain asymmetric nucleotide-binding sites (NBSs) and some of them are inhibited by the transported substrate.1 For the active transport of diverse chemically substrates across biological membranes, ABC transport complexes use the energy of ATP binding and subsequent hydrolysis. In this thesis, the heterodimeric ABC exporter TmrAB2,3 from Thermus thermophilus, a functional homolog of the human antigen translocation complex TAP, was investigated by using pulsed electron-electron double resonance (PELDOR/DEER) spectroscopy. In the presence of ATP, TmrAB exists in an equilibrium between inward- and outward-facing conformations. This equilibrium can be modulated by changing the ATP concentration, showing asymmetric behaviour in the open-to-close equilibrium between the consensus and the degenerate NBSs. At the degenerate NBS the closed conformation is more preferred and closure of one of the NBSs is sufficient to open the periplasmic gate at the transmembrane domain (TMD).3 By determining the temperature dependence of this conformational equilibrium, the thermodynamics of the energy coupling during ATP-induced conformational changes in TmrAB were investigated. The results demonstrate that ATP-binding alone drives the global conformational switching to the outward-facing state and allows the determination of the entropy and enthalpy changes for this step. With this knowledge, the Gibbs free energy of this ATP induced transition was calculated. Furthermore, an excess of substrate, meaning trans-inhibition of the transporter is resulting mechanistically in a reverse transition from the outward-facing state to an occluded conformation predominantly.3 This work unravels the central role of the reversible conformational equilibrium in the function and regulation of an ABC exporter. For the first time it is shown that the conformational thermodynamics of a large membrane protein complex can be investigated. The presented experiments give new possibilities to investigate other related medically important transporters with asymmetric NBSs or other similar protein complexes.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Katja BarthGND
URN:urn:nbn:de:hebis:30:3-517577
Place of publication:Frankfurt am Main
Referee:Thomas F. PrisnerORCiD, Benesh JosephORCiDGND, Clemens GlaubitzORCiDGND, Inga HäneltORCiDGND
Advisor:Benesh Joseph
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/11/15
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/11/14
Release Date:2019/11/21
Page Number:198
HeBIS-PPN:45584075X
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht