Funktionelle Oberflächenbeschichtungen und Nanomembranen zur Untersuchung von Biomolekülen

  • Die Kenntnis der Struktur von Biomolekülen und der biologischen Abläufe, in welche diese involviert sind, ist grundlegend für die Entwicklung von medizinischen Behandlungen. Im Rahmen dieser Arbeit wurden Systeme zur Untersuchung von Biomolekülen, insbesondere Proteinen, hergestellt. Im Mittelpunkt stand die Entwicklung von Materialien, welche neue Möglichkeiten zur Präparation von Proteinen zur Untersuchung derer Struktur mittels Kryo-Transmissionselektronenmikroskopie (Kryo-TEM) eröffnen. In zwei weiteren Projekten wurden biomimetische Systeme aufgebaut, welche die Oberfläche eines Biomoleküls oder biologischen Ensembles nachahmen und hierdurch deren Untersuchung ermöglichen. Hier wurden Systeme zur einfachen Nachbildung biologischer Membranen oder Proteinoberflächen betrachtet. Eine wichtige Methode zur Untersuchung der dreidimensionalen Struktur von Biomolekülen ist die Kryo-TEM. Zur Mikroskopie werden die Biomoleküle in wenige Mikrometer großen Löchern eines amorphen Kohlenstofflochfilms mittels einer wenige Nanometer dicken Schicht aus amorphem Eis fixiert. Hierfür wird ein dünner Film einer wässrigen Probe auf den Kohlenstofflochfilm aufgebracht und gefroren. Insbesondere für Membranproteine ist die Herstellung derartiger Proben schwierig, da die Proteinpartikel zur Aggregation und Adsorption an dem Kohlenstofflochfilm neigen, wodurch keine Partikel in den Löchern des Kohlenstofffilmes auftreten, welche mikroskopiert werden können. In dieser Arbeit wurden Materialien zur Verbesserung der Präparation von Proteinen für die Kryo-TEM entwickelt. Es wurden hierfür verschiedene biorepulsive Materialien, auch solche, welche eine spezifische Anbindung der Biomoleküle erlauben, untersucht. Da in der TEM die Probe durchstrahlt wird, eignen sich Nanometer dünne Membranen dieser Materialien als Trägermaterial für die Biomoleküle, da sie nur zu einem geringen Hintergrund führen. Zum einen wurden Nanomembranen durch die chemische Quervernetzung von Nanometer dicken Hydrogelfilmen mit verschiedenen quervernetzenden Molekülen hergestellt. Zum anderen wurden Trägerfilme, wie amorphe Kohlenstofffilme oder Kohlenstoffnanomembranen (engl. carbon nanomembranes, CNM) biorepulsiv funktionalisiert. Darüber hinaus wurde eine Nitrilotriessigsäure(NTA)-funktionalisierte Hydrogel-beschichtete Nanomembran entwickelt, welche markierte Proteine selektiv über einen His-Tag bindet. Neben der Entwicklung von Materialien zur Untersuchung von Proteinen mittels Kryo-TEM wurden Beschichtungen hergestellt, welche die Oberfläche eines Biomoleküls oder eines Ensembles von Biomolekülen nachahmen. Diese Modelloberflächen sollten ebenfalls die Untersuchung von Eigenschaften der biologischen Systeme ermöglichen. Biologische Membranen bestehen aus einem Ensemble von Biomolekülen. Eine Vielzahl verschiedener Biomolekülen tritt in einer komplexen Anordnung in diesen dünnen Membranen auf. Es wurde versucht, strukturierte Membranen mit lokalen Variationen der physikalischen und chemischen Eigenschaften, jedoch weitaus weniger komplexen Aufbau, herzustellen. Die hergestellten Membranen mit biologisch relevanten Strukturen im Mikrometer- bis Zentimeterbereich, können nach weiterer Forschung als einfache Modellsysteme zur Nachahmung ihrer komplexen biologischen Vorbilder dienen. In einem weiteren Projekt wurde eine Modelloberfläche für die Bindungstasche des Proteins FimH, welches eine wichtige Rolle in der bakteriellen Adhäsion spielt, entwickelt. In dem Kooperationsprojekt mit der Arbeitsgruppe Lindhorst wurde ein Modellsystem entwickelt, welches dazu dient, herauszufinden, inwiefern eine Funktionalisierung einer Aminosäurevon FimH über eine vorgeschlagenen Ligationsstrategie möglich ist. Das Modellsystem besteht aus einer biorepulsiven Hydrogel-Matrix, aus welcher die Seitenkette der Aminosäure Tyrosin in die Lösung exponiert ist. Die Substrat-katalysierte Reaktion der Aminosäuren-Seitenkette mit dem Photoschalter wurde mithilfe eines Bakterienadhäsionstests untersucht. Es konnte gezeigt werden, dass sich die vorgeschlagene Ligationsstrategie unter Berücksichtigung von Nebenreaktionen zur Modifizierung des Proteins eignet. Es konnten vier neuartige Systeme, welche die Probenpräparation zur Untersuchung von Proteinen mittels Kryo-TEM vereinfachen, entwickelt werden. Die Ergebnisse sind von wissenschaftlicher Relevanz, da sie die Strukturbestimmung vieler Proteine deutlich vereinfachen und hierdurch beschleunigen können. Außerdem wurden biomimetische Beschichtungen entwickelt, welche entweder Proteinoberflächen oder Biomembranen nachahmen. Die entwickelten Modellsysteme erweitern das Spektrum an Möglichkeiten, Biomoleküle oder biologische Ensembles zu untersuchen.

Export metadata

Metadaten
Author:Julian Johannes Scherr
URN:urn:nbn:de:hebis:30:3-518604
Place of publication:Frankfurt am Main
Referee:Andreas TerfortORCiDGND, Daniel Rhinow
Advisor:Andreas Terfort
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2019/12/02
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/11/01
Release Date:2019/12/19
Page Number:212
HeBIS-PPN:45704408X
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht