Optogenetic, behavioral and molecular analysis of neuronal networks regulating locomotion in Caenorhabditis elegans

  • An essential part of the animal survival strategy comprises the ability to control body movement and coordinate long-term navigational strategies, in order to maintain locomotion towards a nutrition source and stay in its vicinity. In the nematode Caenorhabditis elegans (C. elegans) this function is carried out by neuronal circuits, that vary their activity in response to diverse environmental condition. This comprises different classes of neurons, acting together in a sensory, signaling and modulatory system to control body posture and induce behavioral responses. For this reason, one particular goal in the field of neuroscience research is to elucidate the mechanisms of how neuronal circuits integrate multiple sensory cues to navigate the environment. Aim of this study was to analyze the function of a neuronal network comprising the interneurons AVK, as well as the identification of signaling molecules, controlling body posture during food related locomotory behavior. This should be achieved by establishing optogenetic approaches, which provide a non inversive and temporally precise control of neuronal activity and drives the activation or silencing of individual neurons, to alter the neuronal basis of behavior. Animals exposed to food perform a dwelling-like behavior, characterized by a slowing of locomotion with a reduced crawling distance and an irregular movement, accompanied by a high frequency of pauses, reversals and directional changes. Upon food-removal, they initiate a local-search behavior with the same behavioral characteristics, but with a more pronounced sinusoidal movement. After a prolonged period of unsuccessful food finding, animals exhibited long runs with reduced pauses, reversals and turnings, increasing their maximal covered distance, indicated as dispersal behavior. Acute photoinhibition of AVK neurons, mediated by cell-specific expression of halorhodopsin (NpHR) caused the animals to perform a dwelling-like locomotory state with increased bending angles, as seen during local-search behavior. Thus, food-induced behavioral effects are mimicked by the optogenetic manipulation of AVK interneurons. In this study, signaling molecules were ascertained by cell specific mRNA profiling of AVK neurons, mediating these behavioral responses. It was able to demonstrate, that flp-1, coding for a FMRFamidelike neuropeptide, is one of the genes with the highest distribution in AVK. In the absence of food, AVK neurons continuously release the FMRFamide-like neuropeptide FLP-1 to inhibit a subset of target motoneurons, leading the animals to maintain a low body curvature to promote dispersing behavior. Conversely, if AVK was inhibited by NpHR or the presence of food, less FLP-1 was secreted to the body fluid, indicated by reduced intracellular fluorescence levels of mCherry-tagged FLP-1 proteins in the scavenger cells. The search of a FLP-1 receptor was successful by in vitro investigation on G protein-coupled receptors (GPCRs) and neuropeptide ligands, revealing NPR-6 to be activated by FLP-1 neuropeptides, but with a low potency. Expression pattern of the NPR-6 receptor indicated receptor localization in in the VC ventral cord and SMB head motoneurons, as well as in a subset of other neurons required for chemosensation and feeding. AVK interneurons are highly coupled to SMB head motoneurons, forming electrical synapses composed of the gap junction protein subunits UNC-7 and UNC-9. Elimination of SMB or gap junction genes using cell ablation and RNA interference, respectively, phenocopied effects of AVK inhibition on bending angles. Furthermore, this study was able to demonstrate that these neurons get inhibited during FLP-1 transmission to the NPR-6 receptor, which was required to mediate AVK effects on crawling behavior. Consequently, photoinhibition of AVK caused disinhibition of VC and SMB neurons, in order to enhance sinusoidal movement and to induce a local-search related locomotory behavior. Thereby, FLP-1 neuropeptide transmission is the preferred used signaling pathway over direct gap junction coupling. Additional neuropeptides and receptors were identified to be essential downstream to AVK neurons to mediate effects on body curvature and locomotory behavior as well. The high-potency FRPR-7 receptor was shown to mediate FLP-1 peptide effects on undulatory motion during swimming in a liquid environment, rather than crawling locomotion on a solid surface. This result suggests that the receptor NPR-6 is required for FLP-1 peptide effects on bending and crawling locomotion, whereas conversely the receptor FRPR-7 is addressed by FLP-1 peptides to exclusively regulate swimming behavior. The FRPR-7 receptor is expressed in the AIM and NSM motoneurons, which are suggested to be the primary neuronal candidates mediating swimming behavior. Furthermore, this study provides evidence, that FRPR-7 acts in the DVC interneuron to control spontaneous reversal behavior, most probably by inhibitory FLP-1 signaling from the AVK neurons. Among other neuropeptides, the FMRFamide-like peptide FLP-26 binds with higher affinity to NPR-6 receptors than FLP-1 peptides. FLP-26 peptides are expressed in the SMB motoneurons, where they are able to further potentiate FLP-1 inhibitory effects by simultaneous binding to NPR-6. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexandra Oranth
URN:urn:nbn:de:hebis:30:3-519519
Place of publication:Frankfurt am Main
Referee:Alexander GottschalkORCiDGND, Eric Geertsma
Advisor:Alexander Gottschalk
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/09/12
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/11/27
Release Date:2019/12/12
Page Number:260
HeBIS-PPN:456879722
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht