Functional renormalization group approach to classical and quantum spin systems

  • The present thesis is primarily concerned with the application of the functional renormalization group (FRG) to spin systems. In the first part, we study the critical regime close to the Berezinskii-Kosterlitz-Thouless (BKT) transition in several systems. Our starting point is the dual-vortex representation of the two-dimensional XY model, which is obtained by applying a dual transformation to the Villain model. In order to deal with the integer-valued field corresponding to the dual vortices, we apply the lattice FRG formalism developed by Machado and Dupuis [Phys. Rev. E 82, 041128 (2010)]. Using a Litim regulator in momentum space with the initial condition of isolated lattice sites, we then recover the Kosterlitz-Thouless renormalization group equations for the rescaled vortex fugacity and the dimensionless temperature. In addition to our previously published approach based on the vertex expansion [Phys. Rev. E 96, 042107 (2017)], we also present an alternative derivation within the derivative expansion. We then generalize our approach to the O(2) model and to the strongly anisotropic XXZ model, which enables us to show that weak amplitude fluctuations as well as weak out-of-plane fluctuations do not change the universal properties of the BKT transition. In the second part of this thesis, we develop a new FRG approach to quantum spin systems. In contrast to previous works, our spin functional renormalization group (SFRG) does not rely on a mapping to bosonic or fermionic fields, but instead deals directly with the spin operators. Most importantly, we show that the generating functional of the irreducible vertices obeys an exact renormalization group equation, which resembles the Wetterich equation of a bosonic system. As a consequence, the non-trivial structure of the su(2) algebra is fully taken into account by the initial condition of the renormalization group flow. Our method is motivated by the spin-diagrammatic approach to quantum spin system that was developed more than half a century ago in a seminal work by Vaks, Larkin, and Pikin (VLP) [Sov. Phys. JETP 26, 188 (1968)]. By embedding their ideas in the language of the modern renormalization group, we avoid the complicated diagrammatic rules while at the same time allowing for novel approximation schemes. As a demonstration, we explicitly show how VLP's results for the leading corrections to the free energy and to the longitudinal polarization function of a ferromagnetic Heisenberg model can be recovered within the SFRG. Furthermore, we apply our method to the spin-S Ising model as well as to the spin-S quantum Heisenberg model, which allows us to calculate the critical temperature for both a ferromagnetic and an antiferromagnetic exchange interaction. Finally, we present a new hybrid formulation of the SFRG, which combines features of both the pure and the Hubbard-Stratonovich SFRG that were published recently [Phys. Rev. B 99, 060403(R) (2019)].

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jan Krieg
URN:urn:nbn:de:hebis:30:3-526287
Place of publication:Frankfurt am Main
Referee:Peter KopietzORCiDGND, Roser ValentíORCiDGND, Adam Rancon
Document Type:Doctoral Thesis
Language:English
Year of Completion:2019
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/12/06
Release Date:2020/01/09
Page Number:189
HeBIS-PPN:457457732
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht