Structural and functional characterization of a MATE family multidrug resistance transporter from "Pyrococcus furiosus"

  • The members of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) transporter superfamily mediate export of a wealth of molecules of physiological and pharmacological importance. According to the Transporter Classification Database (TCDB), the MOP superfamily is mainly categorized into six distantly related families functionally characterized families: the multidrug and toxic compound extrusion (MATE), the polysaccharide transporter (PST), the oligosaccharidyl-lipid flippase (OLF), the mouse virulence factor (MVF) the agrocin 84 antibiotic exporter (AgnG), and the progressive ankylosis (Ank) family. Among these, the multidrug resistance MATE family transporters are most ubiquitous, being present in all domains of life: Archaea, Bacteria and Eukarya. As secondary active transporters, they utilize transmembrane electrochemical ion gradients of Na+ and/or H+ in order to drive the efflux of xenobiotics or cytotoxic metabolic waste products with specificity mainly for polyaromatic and cationic substrates. Active efflux of drugs and toxic compounds carried out by multidrug transporters is one of the strategies developed by bacterial pathogens to confer multidrug resistance. MATE proteins provide resistance to, e.g., fluoroquinolone, aminoglycoside antibiotics, and anticancer chemotherapeutical agents, thus serving as promising pharmacological targets for tackling a severe global health issue. Based on their amino acid sequence similarity, the MATE family members are classified into the NorM, the DNA-damage-inducible protein F (DinF), and the eukaryotic subfamilies. Structural information on the alternate conformational states and knowledge of the detailed mechanism of the MATE transport are of great importance for the structure-aided drug design. Over the past decade, the crystal structures of representative members of the NorM, DinF and eukaryotic subfamilies have been presented. They all share similar overall architecture comprising 12 transmembrane helices (TMs) divided into two domains, the N-terminal domain (TMs 1-6) and the C-terminal domain (TMs 7-12), connected by a cytoplasmic loop between TM6 and TM7 (Fig. II.1). Since all available MATE family structures are known only in V-shaped outward-facing states with the central binding cavity open towards the extracellular side, a detailed understanding of the complete transport cycle has remained elusive. In order to elucidate the underlying steps of the MATE transport mechanism, structures of distinct intermediates, particularly inward-facing conformation, are required.In my PhD project, structural and functional studies have been performed on a MATE family (DinF subfamily) transporter, PfMATE, from the hyperthermophilic and anaerobic archaeon Pyrococcus furiosus. This protein was produced homologously in Pyrococcus furiosus as well as heterologously in Escherichia coli, and used for the subsequent purification and crystallization trials by the vapor diffusion (VD) and lipidic cubic phase (LCP) method. To the best of my knowledge, PfMATE is the first example of a successful homologous production of a membrane protein in P. furiosus. Due to the very low final amount of the purified protein from the native source, the heterologously produced PfMATE samples were typically used for the extensive structural studies. Crystal structures of PfMATE have been previously determined in an outward-facing conformation in two distinct states (bent and straight) defined on the arrangement of TM1. A pH dependent conformational transition of this helix regulated by the protonation state of the conserved aspartate residue Asp41 was proposed. However, it has been discussed controversially, leading to the hypothesis about TM1 bending to be rather affected by interactions with exogenous lipids (monoolein) present under the crystallization conditions. Based on these open questions, an experimental approach to investigate the role of lipids as structural and functional modulators of PfMATE has been taken in the course of my PhD project. The interplay between membrane proteins and lipids can affect membrane protein topology, structure and function. Considering differences between archaeal and bacterial lipid composition, cultivation of P. furiosus cells and extraction of its lipids was followed by the mass spectrometry (MS) based lipidomics for identification of individual lipid species in the archaeal extract. In order to assess the effects of lipids on PfMATE, different lipid molecules were used for co-purification and co-crystallization trials. This dissertation presents a workflow leading to the structure determination of a MATE transporter in the long sought-after inward-facing state, which has been achieved upon purification and crystallization of the heterologously produced PfMATE in the presence of lipids from its native source P. furiosus. Also, the PfMATE outward-facing state obtained from the crystals grown at the acidic pH conditions sheds light on the previously proposed pH-dependent structural alterations within TM1. It is interesting to note that the inward and outward-facing states of PfMATE were obtained from the crystals grown under similar conditions, but in the presence and absence of native lipids, respectively. This observation supports the hypothesis about physiologically relevant lipids to act as conformational modulators or/and a new class of substrates, expanding the substrate spectrum of the MATE family transporters. Comparative analysis of two PfMATE states reveals that transition from the outward to the inward-facing state involves rigid body movements of TMs 2-6 and 8-12 to form an inverted V, facilitated by a loose binding of TMs 1 and 7 to their respective bundles and their conformational flexibility. Local fluctuations within TM1 in the inward-facing structure, including bending and unwinding in the intracellular half of the helix, invoke its highly flexible nature, which is suitable for ion and substrate gating. ...

Download full text files

Export metadata

Metadaten
Author:Sandra Zakrzewska
URN:urn:nbn:de:hebis:30:3-528324
Place of publication:Frankfurt am Main
Referee:Klaas Martinus PosORCiD, Hartmut MichelORCiDGND
Advisor:Hartmut Michel
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2020/01/24
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/12/17
Release Date:2020/01/31
Page Number:209
HeBIS-PPN:458300500
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht