Dielectron production in Pb-Pb collisions at √sNN = 5.02 TeV with ALICE

  • Der Urknall vor ungefähr 13.8 Milliarden Jahren markiert die Entstehung des Universums. Die gesamte Energie und Materie war in einem Punkt konzentriert und expandiert seitdem kontinuierlich. Wenige Sekundenbruchteile nach dem Urknall war die Temperatur und Dichte dieser Materie extrem hoch und die erschaffenen Elementarteilchen, speziell Quarks und Gluonen, durchliefen einen Zustand den man als Quark-Gluon-Plasma (QGP) bezeichnet und innerhalb dessen die starke Wechselwirkung dominiert. Innerhalb dieses Plasmas können Quarks und Gluonen, welche sonst in Hadronen gebunden sind, sich frei bewegen. Die direkte Beobachtung des frühzeitlichen QGPs ist mit heutigen Mitteln nicht möglich. Allerdings ist es möglich die Dynamik und Kinematik innerhalb eines künstlich erzeugten QGPs zu erforschen und damit Rückschlüsse auf die Vorgänge während des Urknalls zu machen. Um künstliche QGPs unter kontrollierten Bedingungen zu erzeugen, werden heutzutage ultrarelativistische Schwerionen zur Kollision gebracht. Der stärkste je gebaute Schwerionenbeschleuniger LHC befindet sich am Kernforschungzentrum CERN in der Nähe von Genf. Das ALICE Experiment, als eines der vier großen Experimente am LHC, wurde speziell gebaut um das QGP näher zu untersuchen. Vollständig ionisierte Bleikerne werden mit nahezu Lichtgeschwindigkeit in den Experimenten zur Kollision gebracht. Die deponierte Energie lässt die Temperatur der Quarks und Gluonen innerhalb der kollidierenden Nukleonen ansteigen bis eine kritische Temperatur überschritten wird und ein Phasenübergang in das QGP erfolgt. Im Laufe der Kollision kühlt das Medium ab und gelangt unter die kritische Temperatur. Nun werden aus den ehemals freien Quarks Hadronen gebildet. Diese Hadronen oder Zerfallsprodukte dieser Hadronen können daraufhin in die Detektoren des Experiments fliegen und werden dann dort gemessen. Es gibt mehrere mögliche Observablen des QGP, die messbar mit dem ALICE Experiment sind. Die Observablen, die in dieser Arbeit detailliert untersucht werden, sind die invariante Masse und der Paartransversalimpuls eines Dielektrons. Ein Dielektron besteht aus einem Elektron und einem Positron, welche miteinander korreliert sind. Dielektronen sind ideale Sonden zur Vermessung des QGPs. Sie werden durch verschiedene Prozesse während allen Kollisionsphasen produziert, wie beispielsweise bei den initialen, harten Stößen der kollidierenden Nukleonen oder durch den elektromagnetischen Zerfall verschiedener Hadronen wie π0 und J/ψ. Zusätzlich strahlt das QGP Dielektronen abhängig von seiner Temperatur ab. Theoretisch erlaubt dies die direkte Temperaturmessung des QGPs. Ein weiterer Vorteil der Dielektronenmessung gegenüber der Messung von Hadronen liegt darin, dass Elektronen und Positronen keine Farbladungen tragen und somit auch nicht mit der dominierenden starken Wechselwirkung innerhalb des QGPs interagieren und somit unbeeinflusst Informationen über seine Dynamik liefern können. In dieser vorliegenden Arbeit werden Dielektronenspektren als Funktion der invarianten Masse und des Paartransversalimpulses in Blei-Blei-Kollisionen mit einer Schwerpunktsenergie von √sNN = 5.02 TeV gemessen. Das erste Mal in Schwerionenkollisionen konnte an einem der großen LHC Experimente der minimale Transversalimpuls der gemessenen Elektronen und Positronen auf peT > 0.2 GeV/c minimiert werden. Dies gibt im Vergleich zu der publizierten Messung mit peT > 0.4 GeV/c die Möglichkeit auch sogenannte weiche Prozesse zu messen, erhöht aber auch den Komplexit ätsgrad der Messung durch massiv gesteigerten Untergrund. Zusätzlich ist die Messung zentralitäsabhängig durchgeführt. Zentralität ist ein Maß für den Abstand der beiden Bleikerne zum Zeitpunkt der Kollision. Je zentraler eine Kollision, desto größer ist die deponierte Energie und desto größer und heißer ist das erzeugte QGP und die daraus resultierenden Effekte. Die gemessenen Dielektronenverteilungen werden mit dem erwarteten Beiträgen aus hadronischen Zerfällen verglichen. Die Messung ergibt, dass der Beitrag aus semileptonischen Zerfällen von Charmquarks gemessen im Vakuum, welcher mit der Anzahl der binären Nukleon-Nukleon-Kollisionen in Blei-Blei-Ereignissen hochskaliert ist, nicht das Dielektronenspektrum beschreibt. Eine Modifizierung des Beitrag gemäß des unabhängig gemessenen nuklearen Modifikationsfaktors für einzelne Elektronen aus Charm- und Beautyquarks verbessert die Beschreibung des Dielektronenspektrums. Zusätzlich wurde der Beitrag virtueller direkter Photonen abgeschätzt. Die gemessenen Werte sind vergleichbar mit vorangegangenen Messungen bei einer niedrigeren Schwerpunktsenergie. Ebenso ist es möglich in periphären Kollisionen einen Beitrag durch eine Quelle zu vermessen, die Dielektronen bei niedrigem Transversalimpuls pT,ee < 0.15 GeV/c aussendet.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Carsten KleinGND
URN:urn:nbn:de:hebis:30:3-528988
Place of publication:Frankfurt am Main
Referee:Henner BüschingGND, Harald AppelshäuserGND
Advisor:Henner Büsching
Document Type:Doctoral Thesis
Language:English
Year of Completion:2020
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/01/31
Release Date:2020/02/25
Tag:ALICE; Dielectron; Heavy-Ion Collision; QGP; Quark-Gluon-Plasma
Page Number:200
HeBIS-PPN:460191551
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht