Neural placement based on optimization principles

Neurale Platzierung anhand von Optimierungsprinzipien

  • Durch natürliche Selektion werden Funktionen, die dem Überleben und dem Fortpflanzungserfolg eines Organismus dienen, optimiert. Da die Struktur eines Organs dessen Funktion und umgekehrt die Funktion eines Organs dessen Struktur bestimmt, kann durch das Studium der Morphologie die Funktionsweise von Organen verstanden werden. Trotz des umfangreichen Wissens über die Struktur von Nervensystemen sowohl auf mikro- als auch auf makroskopischer Ebene, ist es weiterhin unklar, wie Bewusstsein und ein kohärentes Abbild der Umwelt im Gehirn erzeugt werden. Der Grund hierfür ist vor allem die gewaltige Komplexität neuronaler Netzwerke, die unmöglich geistig erfasst werden können. Eine Möglichkeit, das Gehirn ohne das detaillierte Wissen über all seine Bestandteile zu verstehen, bietet das Studium von Optimierungsprinzipien und deren Anwendung in theoretischen Modellen. So wie eingangs erwähnt die Funktion von Organen durch natürliche Selektion optimiert wird, sollte auch die Funktion neuronaler Netzwerke optimiert werden und neuronale Netzwerke sollten entsprechend solcher Optimierungsprinzipien aufgebaut sein. Ein wichtiges Prinzip, das essenziell für die Effizienz neuronaler Netzwerke ist, ist die Minimierung der Verbindungslänge zwischen Neuronen. Basierend auf diesem Prinzip wurde im Rahmen dieser Dissertation eine algorithmische Methode etabliert, die es ermöglicht Vorhersagen der relativen Position von Neuronen anhand ihrer Verbindungen zu treffen. Diese neuronale Platzierungsmethode beruht darauf, dass Neuronen mit ähnlicher Verbindungsnachbarschaft näher zueinander platziert werden als zu Neuronen mit weniger ähnlichen Verbindungsnachbarn, wodurch die durchschnittliche Verbindungslänge minimiert wird. Nach der Etablierung dieser Methode, wurde diese benutzt um Modelle zu erstellen, die es ermöglichen die Entstehung neuronaler Karten und kortikaler Faltungen im Zusammenhang mit der Konnektivität und der Anzahl der Neuronen zu untersuchen. Neuronale Karten sind geordnete Muster auf der Oberfläche des Kortex, die durch die präferierte Aktivität einzelner Neuronen in Antwort auf Stimuli einer Modalität beobachtet werden können. Im visuellen Kortex existieren sogar mehrere Karten, je nachdem welche Qualität visueller Stimuli man betrachtet. Abhängig von der Präferenz für einen Sehwinkel, ein stimuliertes Auge oder der Orientierung eines Balken-Stimulus, können retinotopische Karten, Karten mit streifenartigen Mustern oder Karten mit sogenannten „Pinwheel“-Strukturen beobachtet werden. Pinwheels sind periodische Strukturen, die sichtbar werden indem man die Orientierungspräferenz von Neuronen für die spezifische Orientierung eines Balken-Stimulus mit der entsprechenden Farbe des Farbkreises visualisiert. Da diese Strukturen eine Ähnlichkeit mit bunten Windrädern haben, werde sie als Pinwheels bezeichnet. Die in dieser Dissertation erstellten Modelle sagen vorher, dass die Entstehung strukturierter neuronaler Karten im Allgemeinen von der Anzahl der Neuronen abhängt. In der Tat könnte diese Abhängigkeit auch für neuronale Karten im Kortex gelten. Während strukturierte Karten im visuellen Kortex in verschiedenen Säugerordnungen wie Primaten, Karnivoren und Huftieren existieren, sind sie in kleinen Nagern mit weniger Neuronen nicht vorhanden, trotz ähnlicher Verbindungsspezifizität. Folglich müssen Unterschiede in der Struktur neuronaler Karten im Kortex nicht zwangsläufig mit einer unterschiedlichen Funktionsweise zusammenhängen, sondern könnten auch durch allgemeine Optimierungsprinzipien beim Aufbau neuronaler Netzwerke bedingt werden. Eine weitere Gemeinsamkeit zwischen verschiedenen Säugetierordnungen ist, dass die relative Dichte der Pinwheels ziemlich genau bei der Zahl Pi liegt. Entsprechend der Ergebnisse dieser Dissertation könnte dies dadurch erklärt werden, dass für neuronale Karten ähnlicher Struktur die Anzahl der Neuronen pro Pinwheel relativ konstant ist. Unterschiede in der räumlichen Dichte der Pinwheels könnten dann einfach durch Unterschiede in der Dichte der Neuronen erklärt werden. Neben den Modellen für neuronale Karten wurde im Rahmen dieser Dissertation auch ein Modell kortikaler Faltungen mit derselben neuronalen Platzierungsmethode erstellt. Die Existenz kortikaler Faltungen wird gemeinhin damit erklärt, dass der Kortex ohne Faltungen wegen seiner verhältnismäßig großen Oberfläche nicht in den Schädel gepackt werden könnte. Allerdings haben Experimente gezeigt, dass die Faltungen nicht durch eine Restriktion des wachsenden Kortex an der Schädeloberfläche entstehen, da auch mit mehr Platz für die Expansion des Kortex die gleichen Faltungsmuster exprimiert werden. Interessanterweise entstehen die kortikalen Faltungen erst, wenn die Proliferation der Neuronen während der Entwicklung größtenteils abgeschlossen ist und die Neuronen anfangen ihre Verbindungen auszubilden. Um kortikale Faltungen basierend auf der Konnektivität zwischen Neuronen im Modell vorherzusagen, genügt es das allgemeine Muster einer starken lokalen, aber schwachen globalen Konnektivität zwischen Neuronen nachzubilden. Abhängig von Variationen dieser Konnektivität, der Anzahl der kortikalen Kolumnen und der Neuronenanzahl innerhalb dieser Kolumnen, können im Modell viele Eigenschaften kortikaler Faltungsmuster in Säugetieren vorhergesagt werden. Ähnlich wie in Säugetieren ist der Faltungsgrad der vom Modell vorhergesagt wird von dem Verhältnis zwischen Parametern, die die Größe und Dicke des Kortex beschreiben, abhängig. Dementsprechend werden mehr und mehr Faltungen mit steigender Anzahl der Kolumnen, aber gleicher Anzahl von Neuronen pro Kolumne vorhergesagt. Wie in Säugetieren entstehen dabei auch die größeren primären Faltungen zuerst bevor es innerhalb der größeren Faltungen zu kleineren Faltungen höherer Ordnung kommt. Neben der Abhängigkeit des Faltungsgrads von der Größe des Kortex können Variationen in der Konnektivität erklären, wie es einerseits zu stereotypischen Faltungsmustern kommen kann, aber andererseits auch warum der Faltungsgrad zwischen verschiedenen Säugerordnungen unterschiedlich mit der Größe des Kortex skaliert. Letztlich könnten pathologische Veränderungen der Konnektivität zu den entsprechenden Änderungen im Faltungsmuster führen. Insgesamt wurde in dieser Arbeit gezeigt, dass mittels einfacher Prinzipien, die die Verbindung zwischen Neuronen und deren relative Position zueinander beschreiben, komplexe neuroanatomische Strukturen vorhergesagt werden können. Da mit derselben Methode zur neuronalen Platzierung sowohl neuronale Karten als auch kortikalen Faltungen, also sehr unterschiedliche Strukturen vorhergesagt werden konnten, stellt sich die Frage, ob diese Strukturen durch einen gemeinsamen biologischen Mechanismus entstehen. Neuronale Zugkräfte sind ein möglicher Mechanismus, der die Entstehung kortikaler Faltungen erklären könnte. Auch wenn es eher unwahrscheinlich ist, dass die Entstehung neuronaler Karten von Zugkräften zwischen Neuronen abhängt, kann es nicht vollständig ausgeschlossen werden. Ob solche Kräfte an der Selbstorganisation neuronaler Netzwerke beteiligt sein könnten, ist eine interessante Fragestellung für zukünftige empirische Studien.

Download full text files

Export metadata

Metadaten
Author:Marvin WeigandORCiDGND
URN:urn:nbn:de:hebis:30:3-546941
Place of publication:Frankfurt am Main
Referee:Bernd Grünewald, Peter JedličkaORCiDGND
Advisor:Bernd Grünewald, Hermann Cuntz
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2020/05/08
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/04/21
Release Date:2020/05/25
Page Number:203
HeBIS-PPN:464619785
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht