Computational approaches to decipher splicing regulatory network of the RON proto-oncogene

  • Alternative splicing (AS) is a co- or post-transcriptional process by which one gene gives rise to multiple isoforms. This ‘split and combine’ step multiplies eukaryotic proteome diversity several fold and is implicated in several diseases given its pervasive impact. Control of alternative splicing is brought about by cis-regulatory elements, such as RNA sequence and structure, which recruit trans-acting RNA-binding proteins (RBPs). Although several of these interactions are already described in detail, we lack a comprehensive understanding of the regulatory code that underlies a splicing decision. Here, we have established a high-throughput screen to comprehensively identify and characterise cis-regulatory elements that control a specific splicing decision. A cancer-relevant splicing event in proto-oncogene RON was picked as a minigene prototype for initialising the screening approach. Then, we transfected a library of thousands of randomly mutagenised minigene variants as a pool into human cells, and subsequently quantified the spliced isoforms by RNA sequencing. Importantly, we used a barcode sequence to tag the minigene variants and thereby linked mutations to their corresponding spliced products. By using a linear regression-based modelling approach, we were able to determine the effects of single mutations on RON AS. In total, more than 700 mutations were found to significantly affect the splicing regulation of the RON alternative exon. In addition, mutation effects quantified from the screening approach correlate with RON alternative splicing in cancer patients. We discovered numerous previously unknown cis-regulatory elements in both introns and exons, and found that the RBP heterogeneous nuclear ribonucleoprotein H (HNRNPH) extensively regulates RON AS at multiple levels in both cell lines and cancer. Furthermore, the large number of RBPs involved in the process, point to a complex splicing regulatory network involved in the control of RON splicing. iCLIP and synergy analysis between mutations and HNRNPH knockdown data pinpointed the most relevant HNRNPH binding sites across RON. Finally, cooperative HNRNPH binding was shown to mediate a splicing switch of RON alternative exon. In summary, our results provide an unprecedented view on the complexity of splicing regulation of an alternative exon. The novel screening approach introduces a tool to study the relationship of RNA sequence variants along with trans-acting regulators to their impact on the splicing outcome, offering insights on alternative splicing regulation and the relevance of mutations in human disease.

Download full text files

Export metadata

Metadaten
Author:Samarth Thonta Setty
URN:urn:nbn:de:hebis:30:3-551467
Place of publication:Frankfurt am Main
Referee:Katharina ZarnackORCiDGND, Enrico SchleiffORCiDGND
Advisor:Katharina Zarnack
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2020/07/14
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/06/03
Release Date:2020/07/17
Page Number:206
HeBIS-PPN:466998368
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht