Influence of artificial sunlight from a microwave plasma lamp on morphology and secondary metabolism of horticultural plants

  • Light is one of the most important abiotic factors for plant physiological processes. In addition to light intensity, the spectral quality of light can also influence the plant morphology and the content of secondary metabolites. In the horticultural industry, artificial light is used in to enable year-round production of herbs, ornamental plants and vegetables in winter terms. Until today, discharge lamps like high-pressure sodium (HPS) lamps, emitting predominantly orange and red light and high amounts of infrared radiation, are the most common lamp systems in greenhouses. In the last decades, light-emitting diodes (LEDs) emerged as an efficient alternative light source. LEDs have the advantage of distinct adjustments to the light spectrum. For a usage in horticultural industry LEDs are often too expensive. Furthermore, reduced plant growth can occur due to incorrectly adjusted light spectra and lower leaf temperatures caused by the lack of infrared radiation. In a research project (LOEWE, funding no. 487/15-29) funded by the Hessen State Ministry of Higher Education, Research and Arts, Microwave plasma lamps (MPL) were tested as new light sources for horticultural industry and plant research. The electrodeless lamp systems emit light in similar properties like sun light. The aim of the study was to determine the influence of artificial sunlight of the MPL on the accumulation of secondary metabolites, plant architecture and plant physiology of three different species (coleus, basil and potted roses). The MPL was compared with other light systems such as commercial HPS lamps, LEDs or ceramic metal halide lamps (CDM). In addition to morphological parameters such as plant height, internode length or fresh and dry weight, the phenolic content of leaves grown under the respective light sources were examined. Overall an increased far-red light content in the emission spectra of the MPL showed high influence on the plant architecture which was observed in all three plant species. Artificial sunlight from MPL induced stem elongation in coleus and basil plants, compared to the other tested light sources. In potted roses a reduced branching degree was observed under MPL light compared to HPS grown plants. In addition to the impact of far-red light also the blue light content of the emission spectra was found to be a strong influencing factor for plant physiological processes. A positive correlation between blue light content and leaf thickness was determined in coleus cultivated under MPL, LED, HPS and CDM lamps. Low blue light content in HPS emission spectra resulted in shade-adapted leaves with low photosynthetic capacity and susceptibility to high irradiances. Blue light was assumed to increase phenolic metabolites in basil and rose leaves. Furthermore, the different light treatments resulted in an alteration of the composition of essential oils of basil. Experiments with coleus plants demonstrated that besides light color also the infrared radiation, had an influence on secondary metabolites by causing different leaf temperatures. Coleus plants grown with MPL showed the lowest content of phenolic compounds such as rosmarinic acid per dry weight. Infrared radiation resulted in a faster plant development indicated by increased biomass production and higher leaf formation rate as observed in coleus and basil plants. The results obtained in this study show that the influence of leaf temperature should always be considered when comparing different lamp systems. Especially when LEDs are compared to discharge lamps an overestimation of light color can be a consequence since also infrared radiation influences the content of phenolic compounds and plant growth.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Oliver Sebastian Dörr
URN:urn:nbn:de:hebis:30:3-552830
Place of publication:Frankfurt am Main; Geisenheim
Referee:Claudia BüchelORCiD, Heiko Mibus-Schoppe
Advisor:Heiko Mibus-Schoppe, Claudia Büchel
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2020/07/28
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Granting Institution:Hochschule Geisenheim University
Date of final exam:2020/06/09
Release Date:2020/08/17
Page Number:158
HeBIS-PPN:467882762
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht