Auswirkung der Chemisorption von Organothiolaten auf den elektrischen Widerstand dünner Goldfilme

  • Hochgeordnete Monolagen von Organothiolaten auf Goldoberflächen bilden sich bei Kontakt einer Goldoberfläche mit einer Lösung eines Thiols oder Thioacetats spontan aus. Die Adsorption auf dünnen Metallfilmen mit Schichtdicken im Bereich von 25 - 100 nm führt zu einer Änderung des elektrischen Widerstandes des Films, die an Goldfilmen mit Schichtdicken von 25 - 40 nm über eine einfache Zweipunktmessung verfolgt wurde. Die Proportionalität der Widerstandsänderung mit der Menge an adsorbiertem Material konnte für die in dieser Arbeit verwendeten Dünnschichtsensoren bestätigt werden. Zu diesem Zweck wurden gleichzeitig Widerstands- und Oberflächenplasmonenresonanzmessungen an 40 nm starken Goldfilmen durchgeführt. In diesen Experimenten zeigt sich die Widerstandsmessung zur Beobachtung der Adsorptionskinetik als die überlegene Technologie. Die durch Mikrokontaktdrucken und Freiätzen der gedruckten Strukturen hergestellten Sensoren zeigen eine individuelle Signalintensität. Die Normierung auf die maximale, durch Belegung mit Hexadecanthiol (HDT) oder Dodecanthiol erreichte, Signalstärke ermöglichte den Vergleich der maximalen Signalstärke von Thiolatmonolagen, die durch Belegung mit n-Alkanthiolen (CH_3(CH_2)_(n-1)-SH mit n = 12, 16, 19, 22 und 33, Cn), 11-Mercaptoundecyl-hexaethylenglycol (HSC11EG6OH), Adamantan-1-thiol (AdaSH), Triptycenthiol (TrpSH), Anthracen-2-thiol (Ant-0SH), Anthracen-2-alkanthiolen (Ant-(CH_2)_n-SH mit n = 1 - 5 und 10, Ant-nSH), p-Terphenyl-4-thiol (TP0SH), p-Terphenyl-4-alkanthiolen (TP-(CH_2)_n-SH mit n = 1 - 4, TPnSH) und p-Terphenyl-4-ethanthioacetat (TP2SAc) erzeugt wurden. Die Größe der Widerstandsänderung zeigt eine deutliche Abhängigkeit vom organischen Rest des Oberflächenadsorbats. Für die Verstärkung des Signals wurde die folgende Reihenfolge gefunden: Trp > Ada > Ant-0 > Ant-1 > TP0 > TP1 > Ant-2 > TP2 > Cn (n = 12 - 33) = C11EG6OH = Ant-n (n = 3 - 11) = TPn (n = 3, 4). Bei bekannter Verstärkung des Signals durch ein Adsorbat kann unabhängig von der Oberflächenrauigkeit die Oberflächenbedeckung durch Chemisorbate in einer Güte bestimmt werden, die der durch STM- und TEM-Messungen erreichten vergleichbar ist. Die Methode wurde angewendet, um Schichten von TP2SH und TP2SAc, die bei 20 und 60 °C aus ethanolischer Lösung abgeschieden wurden, zu vergleichen. Die Unterschiede in der Oberflächendichte, die durch eine Erhöhung der Abscheidungstemperatur zu beobachten sind, können durch eine Beschleunigung der Reaktion nach Arrhenius erklärt werden. Auch die Temperaturabhängigkeit der Abscheidungsgeschwindigkeit von HDT aus ethanolischer Lösung an Goldoberflächen, die in einem Bereich von -10 °C bis +30 °C betrachtet wurde, ist mit dem Arrhenius'schen Ansatz konform. Die Aktivierungsenergie der Adsorption von HDT auf Gold wurde auf E_a = 23 +-6 kJ/mol bestimmt. Die Konzentrationsabhängigkeit der Abscheidung aus ethanolischer Lösung an Goldoberflächen wurde für HDT, AdaSH, TP2SH und TP2SAc untersucht. Um eine Präadsorption der Thiole vor dem eigentlichen Start der Messung zu verhindern, wurde eine Apparatur mit einem Diaphragma aus Aluminium entwickelt, das beim Start der Messung mit dem Sensor durchstoßen wird. Mit Ausnahme von TP2SH zeigen alle Adsorptive ein Adsorptions-Desorptions-Gleichgewicht. Die Adsorptionsisothermen bei 20 °C lassen sich am besten durch die Freundlich-Isotherme beschreiben. Während die Reaktionsordnung im Adsorbat für die Adsorption der Thiole nahe an 1 liegt, hat sie für die Adsorption von TP2SAc einen Wert von ca. 1/4. Damit ergibt sich für die Geschwindigkeitskonstante der Adsorption k_a(HDT) = (2,3 +-0,2) 10^4 L/(mol s), k_a(AdaSH) = (6,1 +-0,2) 10^4 L/(mol s), k_a(TP2SH) = (7,3 +-0,4) 10^3 L/(mol s) und k_a(TP2SAc) = (8 +-3) 10^-2 L^(1/4)/(mol^(1/4) s). Die Adsorptionskurven der Thiole weisen bei Konzentrationen unterhalb von 5 10^-5 mol/L einen linearen Bereich auf, der einer zwischenzeitlichen Diffusionskontrolle zugeordnet wird. An die aufgenommenen Adsorptionskurven der Thiole wurden literaturbekannte Modelle numerisch angepasst und teilweise weiterentwickelt. Die Anpassung konnte durch die Einführung einer vor der Oberfläche gelagerten Diffusionsgrenzschicht, in welcher der zeitabhängige Verlauf der Analytkonzentration in einem System von 10 Schichten berechnet wurde, deutlich verbessert werden. Von allen getesteten Modellen zeigt nur die Adsorption mit Ausschlussmuster keine Konzentrationsabhängigkeit der Geschwindigkeitskonstante der Desorption. Dieses Modell bezieht den Verlust von Adsorptionsplätzen mit ein, die einem besetzten Adsorptionsplatz benachbart sind und durch das adsorbierte Teilchen verdeckt werden. Der daraus resultierende Zusammenhang zwischen der Konzentration freier Adsorptionsplätze und dem Bedeckungsgrad der Oberfläche Theta_F(Theta) ist abhängig vom Verhältnis der Stoßfrequenz zwischen den Teilchen und der Oberfläche zur Platzwechselfrequenz der Teilchen auf der Oberfläche. Zur Bestimmung von Theta_F(Theta) für die numerische Anpassung der Adsorptionskurven von HDT und TP2SH wurde die Oberflächenbesetzung in einem Monte-Carlo-Verfahren für eine Konzentrationsreihe in Zehnerpotenzschritten simuliert.

Download full text files

Export metadata

Metadaten
Author:Kathrin BarbeGND
URN:urn:nbn:de:hebis:30:3-553848
Place of publication:Frankfurt am Main
Referee:Andreas TerfortORCiDGND, Michael HuthORCiDGND
Advisor:Andreas Terfort
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2020/08/12
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/10/15
Release Date:2020/08/28
Page Number:357
HeBIS-PPN:468461183
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht