Development of NMR spectroscopic methods for the characterization of RNA

  • This PhD thesis is dedicated to the extension of the portfolio of nuclear magnetic resonance (NMR) methods to characterize ribonucleic acids (RNAs). Only within the last few decades it has been realized that the cellular role of RNA goes well beyond the central dogma of molecular biology. In fact, RNA takes part in numerous cellular processes, executes numerous functions and acts either as a single player or in larger complexes, mostly RNA-protein complexes (RNPs) such as the ribosome or the spliceosome. This versatility in RNA function is coupled to a structural variety and the ability to adopt multiple long-lived and intricate conformations. Due to this high molecular complexity special demands are placed on the methods that are required for RNA structural characterization. With the ability to capture dynamics at atomic resolution and to measure under close to native conditions, NMR spectroscopy is undoubtedly a prime method for this purpose. A general introduction to the current state of research, selected achievements as well as challenges in the field of NMR spectroscopy on RNA is given in Chapter I. This thesis is further composed of three independent chapters covering the three separate projects, which form the main body of work within the course of this thesis. The imino group found in two of the four RNA nucleobases is generally considered to be the most powerful reporter group in the process of the NMR spectroscopic characterization of RNA. Its resonance assignment provides key information for a rapid determination of the RNA’s secondary structure. This is possible, since the imino proton can only be detected, if it is protected from rapid solvent exchange through hydrogen bonding interactions or, in rare cases, steric shielding. Consequently, information on flexible regions of RNA that are not protected against solvent exchange cannot be derived using this NMR spy. It is a key finding of the thesis that nucleobase interactions can also be mapped through the amino groups, as they similarly take part in base pairing or RNA-ligand interactions. Notably, solvent exchange of the amino protons is always slower compared to the imino proton. Thus, 1H,15N resonances of the amino group can be detected even for dynamic regions of RNA. Moreover, focusing on characterizing amino groups of RNA nucleobases increases the number of available reporters as amino groups are present in three out of four RNA nucleobases. However, there is a reason that up to work conducted in this thesis, amino groups have not been used for monitoring RNA nucleobases: the rate of the C-NH2 bond rotation is most often close to the chemical shift differences of the two non-identical amino proton resonances, in particular for guanosines and adenosines, amino resonances regularly remain elusive in NMR spectra. Therefore, we developed experiments that excite double quantum (DQ) coherences of the two amino group protons and that further utilize 13C-detection. Results on these experiments are discussed in Chapter II and show that the rotational exchange can be avoided by evolving double quantum instead of single quantum (SQ) coherence in the indirect dimension of a 13C-detected C(N)H-HDQC experiment. The new experiment enables the detection of a full set of sharp amino resonances. The advantages of this experiment are immediately apparent when comparing the number of observable imino resonances in a classic 1H,15N-HSQC spectrum with the number of amino resonances obtained in the 13C-detected C(N)H-HDQC spectrum of the same RNA. Furthermore, based on the newly available resonance assignment of amino groups, we developed a 13C-detected “amino”-NOESY experiment to obtain precious additional structural restraints. The 13C-detected “amino”-NOESY experiment enables the observation of NOE contacts that are not accessible using other 1H-detected NOESY experiment. Among these new NOE contacts are valuable, inter-residual correlations, which are otherwise scarce in RNA due to the proton deficiency of its nucleobases. We showed that the newly obtained NOE contacts are especially important in the structure determination of RNAs with only few NOE restraints. Under such circumstances, the inclusion of the newly obtained amino NOE contacts lead to a significant improvement in the root-mean-square deviation (RMSD) of the three-dimensional structure of the 34 nts GTP class II aptamer. Together the novel 13C-detected NMR experiments developed within this PhD project provide a valuable alternative for the imino-based characterization of nucleobase interactions. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Robbin SchniedersGND
Place of publication:Frankfurt am Main
Referee:Harald SchwalbeORCiDGND, Jens WöhnertORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2021/02/22
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/02/02
Release Date:2021/02/22
Page Number:188
Last Page:178
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoDeutsches Urheberrecht