Regulation of circular RNAs and micro RNAs in hippocampal neurons

  • Synaptic plasticity is the activity dependent alteration of the composition, form and strength of synapses and believed to be the underlying mechanism of learning and memory formation. While initial changes in synaptic transmission are caused by second messenger signaling pathways and rapid modifications in the cytoskeleton, to achieve stable and persistent changes at individual synapses, the expression of new mRNAs and proteins is required. The central dogma postulated that the cell body is the only source of newly synthesized proteins. For neurons, with their unique morphology, this meant that proteins would need be transported long distances, often hundreds of microns, to reach their destined locations in dendrites and at spines. To overcome this limitation, neurons have developed a strategy to regulate protein synthesis locally by distributing thousands of mRNAs into neuronal processes and use them for local protein synthesis. Ample research has demonstrated the importance of local protein synthesis to many forms of long-term synaptic plasticity. One potential regulator of mRNA localization and local translation in neurons are non-coding RNAs. Intensive work over the past decades has highlighted the importance of non-coding RNAs in many aspects of brain function. The aim of this thesis is to obtain a better understanding of the role of non-coding RNAs in synaptic function and plasticity in the murine hippocampus. For this, we focused our studies on two classes of non-coding RNAs. In the first part of my thesis, I describe our efforts on characterizing circular RNAs, a novel and peculiar family of non-coding RNAs, in the murine hippocampus by combining high throughput RNA-Sequencing with fluorescence in situ hybridization. Furthermore, we investigated the mechanisms of circular RNA biogenesis in hippocampal neurons by temporarily inhibiting spliceosome activity and analyzing the differentially regulated circular RNAs.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Mantian Wang
URN:urn:nbn:de:hebis:30:3-592133
Referee:Erin Schuman, Michaela Müller-McNicollORCiD
Advisor:Erin Schuman
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/03/24
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/12/04
Release Date:2021/05/06
Page Number:178
HeBIS-PPN:478807473
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht