Investigation of co-translational protein folding using cryo-EM and solid-state NMR enhanced by DNP

  • Die zelluläre Proteinbiosynthese findet am Peptidyltransferase-Zentrum innerhalb der großen ribosomalen Untereinheit statt. Die neu synthetisierte Polypeptidkette passiert den ribosomalen Exit-Tunnel, der 80-100 Å lang und 10-20 Å breit ist. Proteinfaltung findet kotranslational statt, während die Peptidkette durch den ribosomalen Tunnel geschleust wird. Zu welchem Ausmaß die Proteine ihre native Struktur noch am Ribosom gebunden annehmen, steht im Fokus aktueller Studien. Verschiedene Methoden, die naszierende Proteinkette am Ribosom zu arretieren und die Faltung des Proteins untersuchen zu können, wurden entwickelt. Zur Herstellung von Ribosom naszierenden Proteinkomplexen (RNCs) in vivo werden Arrestierungspeptide (APs) verwendet. Ein oft genutztes AP ist die 17 Aminosäuren lange SecM Sequenz des E. coli Sekretionsmonitors, das C-Terminal an das zu untersuchende Protein kloniert werden kann und dadurch die Peptidkette am Ribosom behält. RNCs wurden mittels verschiedener Methoden untersucht, einschließlich Proteolyse-Experimenten, enzymatischen Aktivitätsmessungen, FRET, Cryo-EM und NMR-Spektroskopie. Alle Methoden zeigten auf, dass sich die Proteine kotranslational falten und auch am Ribosom eine funktionale Struktur annehmen können. Außerdem konnte eine Peptidkette eine α-Helix innerhalb des Ribosoms ausbilden. Ebenso wurden nicht-native kompakte Strukturen innerhalb der Vestibule detektiert. Die Translation ist ein nicht-uniformer Prozess und der genetische Code degeneriert mit bis zu sechs Codons, die eine einzelne Aminosäure kodieren. Die Verteilung dieser synonymen Codons ist nicht zufällig und sie werden mit verschiedenen Frequenzen innerhalb eines ORFs verwendet. Codons mit einer höheren tRNA Häufigkeit werden schneller eingebaut als Codons, die seltener verwendet werden. Diese seltenen Codons sind häufig zwischen Proteindomänen oder Sekundärstrukturelementen platziert und könnten daher zur Separierung von Faltungsevents dienen. Dass der Austausch von synonymen Codons nicht ohne Folgen ist, zeigten verschiedene Studien. Buhr et al. (2016) zeigte, dass der synonyme Austausch die Translationsgeschwindigkeit, aber auch die Proteinkonformation des bovinen Augenlinsenproteins γB crystallin (GBC) beeinflusst. Während die unmodifizierte Gensequenz aus B. taurus in E. coli langsamer translatiert wurde und zu einem vollständig reduzierten GBC Protein (U) führte, wurde die harmonisierte Genvariante, die der Codon-Verwendung in E. coli angepasst war, schneller exprimiert und resultierte in einem teilweise oxidierten GBC Protein (H). Dieser Befund war der Ausgangspunkt für diese Doktorarbeit. Die gemessenen Oxidationsunterschiede basieren auf der unterschiedlichen Translationsgeschwindigkeit der beiden Gensequenzen. Die N-terminale Domäne (NTD) des Zweidomänen-Proteins GBC enthält sechs der insgesamt sieben Cysteinreste. Nur in dieser Domäne wurde Oxidation detektiert und die drei Cysteine Cys18, Cys22 und Cys78 bilden eine Ansammlung mit einem Abstand von 5.4-6.4 Å. Um zu untersuchen, ob die Unterschiede bereits nach der Translation der NTD ausgebildet werden, wurde ein Ein-Domänen-Konstrukt hergestellt. Dieses Konstrukt beinhaltete die Aminosäuren 1-82, aber nicht den Peptidlinker, der beide Domänen verbindet. Allerdings wurden bei der Translation der ersten 70 Aminosäuren die meisten Translationspausen detektiert. Das 2D 1H-15N HSQC wies anhand der unterschiedlichen chemischen Verschiebung der Signale auf eine gefaltete Proteinstruktur hin. Daher konnte sich die NTD ohne Beteiligung der CTD eigenständig falten. Zugabe von DTT zu beiden Proteinvarianten U und H führte zu keinem messbaren Effekt. Im Gegensatz zu dem Volllängen-Protein, in dem die Variante H teilweise oxidiert war, war die NTD der Variante H vollständig reduziert. Zusätzlich sollte geklärt werden, ob auch mögliche Disulfidbrücken im Inneren des Ribosoms ausgebildet werden können. Dann könnte in beiden Genvarianten eine anfängliche Disulfidbrücke ausgebildet werden und durch die unterschiedliche Translationsgeschwindigkeit die Disulfidbrücke in der langsamen Genvariante im E. coli Zytosol reduziert werden, während diese in der schneller translatierten Variante von der CTD geschützt wird. Um zu untersuchen, ob in der Tat Disulfidbrücken im ribosomalen Tunnel ausgebildet werden können, wurden GBC-Fragmente mittels der SecM Sequenz an das Ribosom arretiert und diese RNCs mittels theoretischer Simulation, Festkörper-NMR, Massenspektrometrie und Cryo-EM gemessen. Theoretische Simulation mittels flexible-mecanno zeigten, dass der ribosomale Tunnel groß genug für die Ausbildung verschiedenster Disulfidbrücken ist. In einem U32SecM Konstrukt, das vier Cysteine und die SecM Sequenz beinhaltet, konnten alle theoretisch möglichen Disulfidbrücken gebildet werden. ...

Download full text files

Export metadata

Metadaten
Author:Linda Schulte
URN:urn:nbn:de:hebis:30:3-592363
Referee:Harald SchwalbeORCiDGND, Clemens Glaubitz
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/03/29
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/03/23
Release Date:2021/06/09
Page Number:211
HeBIS-PPN:479995524
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht