Direct photon and light neutral meson production in hadron collisions at the LHC with ALICE

  • Während den ersten Mikrosekunden nach dem Urknall glaubt man, dass unser Universum aus einer heißen, dichten und stark wechselwirkenden Materie bestanden haben soll, welche man das Quark-Gluonen-Plasma (QGP) nennt. In diesem Medium sind die elementaren Bausteine der Materie, die Quarks und die Gluonen, nicht mehr in Hadronen gebunden, sondern können sich stattdessen wie quasi-freie Teilchen verhalten. Für die ALICE Kollaboration an CERN's Large Hadron Collider (LHC) ist die Untersuchung dieses Mediums eines der Hauptziele. Um dieses Medium im Labor zu erzeugen, werden Protonen und Nukleonen auf nahezu Lichtgeschwindigkeit beschleunigt und anschließend zur Kollision gebracht. Dabei werden Schwerpunktsenergien von bis zu 13 TeV bei Proton-Proton (pp) Kollisionen und bis zu 5.02 TeV bei Blei-Blei (Pb--Pb) Kollisionen erreicht. Bei solchen hochenergetischen Kollisionen werden die kritischen Werte der Energiedichte und Temperatur von jeweils ungefähr 1 GeV/c und undgefähr 155 MeV überschritten, welche mithilfe von "lattice QCD" bestimmt wurden. Sie bieten daher die perfekten Voraussetzungen für einen Phasenübergang von normaler Materie zu einem QGP. Die Entwicklung eines solchen Mediums, beginnend bei der eigentlichen Kollision, gefolgt von der Ausbildung des Plasmas und der letztendlichen Hadronisierung, kann jedoch nicht direkt untersucht werden, da das Plasma eine extrem kurze Lebensdauer hat. Die Studien die das QGP untersuchen möchten, müssen sich deshalb auf Teilchenmessungen und deren Veränderung aufgrund von Einflüssen durch das Medium beschränken. Es ist noch nicht definitiv geklärt, ob sich ein QGP nur in Kollisionen schwerer Ionen bildet, oder ob dies auch in kleineren Kollisionssystemen wie Proton-Proton oder Proton-Blei der Fall ist. Damit in dieser Thesis Einschränkungen bezüglich einer möglichen Erzeugung eines mini-GQP in kleinen Kollisionssystemen gemacht werden kann, wird der Fokus auf Messungen von neutralen Pionen und Eta Mesonen mit dem ALICE Detektor am CERN LHC gesetzt. Hierfür wird in einem Referenzsystem von Proton-Proton Kollisionen bei sqrt(s)=8 TeV und in einem Proton-Blei (p--Pb) System bei sqrt(sNN)=8.16 TeV, welches eine nukleare Modifikation erfährt, gemessen und die Ergebnisse verglichen. Da in Proton-Proton Kollisionen die Bildung eines QGP, aufgrund zu geringer Energiedichte, nicht erwartet wird, dient eine Messung in diesem System als Messbasis, um Effekte der Kollision selbst von Effekten nach der Kollision zu separieren, welche die Teilchenproduktion beeinflussen. Teilchen können zusätzlich zu dem QGP auch mit kalter Kernmaterie interagieren, was sich in asymmetrischen Proton-Blei Kollisionen testen lässt. In diesem Kollisionssystem wird größtenfalls ein vergleichsweise kleines QGP gebildet, wohingegen das Blei Ion selbst als kalte Kernmaterie agieren kann. Zusätzlich zu den Mesonenmessungen wird in dieser Thesis auch die Erzeugung von direkten Photonen bei niedrigen Transversalimpulsen (pT) in multiplizitätsabhängigen p--Pb Kollisionen bei einer Schwerpunktsenergie von sNN=5.02 TeV gemessen, welche als direkte Probe, sowie als charakteristisches Signal des QGP gilt. Die neutralen Pionen, welche in dieser Thesis gemessen werden, kann man als einen Überlagerungszustand der zwei leichtesten Quarksorten, dem "up" (u) und dem "down" (d) Quark, sowie deren entsprechenden Anti-Teilchen verstehen. Das eta meson hingegen hat einen zusätzlichen Anteil des "strange" Quarks und eine resultierende höhere Masse. Quarks sind Teil des Standardmodells der Teilchenphysik, welches die Elementarteilchen und die zwischen ihnen wirkenden Elementarkräfte, ausgeübt durch Bosonen, beschreibt. Das Modell umfasst insgesamt sechs Quarks, welche sich durch ihre Masse und Ladung unterscheiden und als Grundbestandteil von gebundenen Zuständen, sogenannten Hadronen, fungieren. Die "up" und "down" Quarks gelten hierbei als die leichtesten Quarks und kommen daher am häufigsten in der Natur vor. Das bekannteste Beipiel stellen hier die allgemein bekannten Protonen (uud) und Neutronen (udd) dar, welche die Grundkomponenten von Nukleonen sind. Die restlichen Quarks tragen eine deutlich höhere Masse und haben daher eine große Tendenz, sich in leichtere Quarks umzuwandeln, wodurch ihre Lebensdauer sehr gering ist. Die "top" und "bottom" Quarks, welche die Schwersten sind, können daher nicht in gewöhnlicher Materie gefunden werden. Sie können jedoch experimentell durch hoch energetische Teilchenkollisionen erzeugt werden und indirekt über ihre Zerfallsprodukte nachgewiesen werden. Quarks tragen eine elektrische Ladung von entweder 1/3 oder 2/3, sowie eine Farbladung, wobei Letztere verantwortlich für ihre Bindung in Hadronen ist. Hadronen bestehen entweder aus drei Quarks, dann werden sie Baryonen genannt, oder aus einem Quark-Antiquark Paar, welches Meson genannt wird. Diese gebundenen Zustände erfüllen eine insgesamt neutrale Farbladung, sowie eine vollzählige elektrische Ladung. Des Weiteren gibt es auch exotische Penta-Quark Zustände, welche aus vier Quarks und einem Antiquark bestehen und bereits experimentell nachgewiesen wurden. Aufgrund der starken Wechselwirkung, welche durch Gluonen vermittelt wird, können Quarks nicht einzeln beobachtet werden. ...

Download full text files

Export metadata

Metadaten
Author:Nicolas SchmidtORCiDGND
URN:urn:nbn:de:hebis:30:3-610870
DOI:https://doi.org/10.21248/gups.61087
Place of publication:Frankfurt am Main
Referee:Henner BüschingGND, Harald AppelshäuserGND
Advisor:Constantinos A, Loizides
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/05/31
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/05/31
Release Date:2021/09/29
Page Number:169
HeBIS-PPN:485866080
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht