A new reduced-morphology model for CA1 pyramidal cells and its validation and comparison with other models using HippoUnit

  • Modeling long-term neuronal dynamics may require running long-lasting simulations. Such simulations are computationally expensive, and therefore it is advantageous to use simplified models that sufficiently reproduce the real neuronal properties. Reducing the complexity of the neuronal dendritic tree is one option. Therefore, we have developed a new reduced-morphology model of the rat CA1 pyramidal cell which retains major dendritic branch classes. To validate our model with experimental data, we used HippoUnit, a recently established standardized test suite for CA1 pyramidal cell models. The HippoUnit allowed us to systematically evaluate the somatic and dendritic properties of the model and compare them to models publicly available in the ModelDB database. Our model reproduced (1) somatic spiking properties, (2) somatic depolarization block, (3) EPSP attenuation, (4) action potential backpropagation, and (5) synaptic integration at oblique dendrites of CA1 neurons. The overall performance of the model in these tests achieved higher biological accuracy compared to other tested models. We conclude that, due to its realistic biophysics and low morphological complexity, our model captures key physiological features of CA1 pyramidal neurons and shortens computational time, respectively. Thus, the validated reduced-morphology model can be used for computationally demanding simulations as a substitute for more complex models.

Download full text files

Export metadata

Metadaten
Author:Matus TomkoORCiD, Lubica BenuskovaORCiD, Peter JedličkaORCiDGND
URN:urn:nbn:de:hebis:30:3-636438
DOI:https://doi.org/10.1038/s41598-021-87002-7
ISSN:2045-2322
Parent Title (English):Scientific reports
Publisher:Macmillan Publishers Limited, part of Springer Nature
Place of publication:[London]
Document Type:Article
Language:English
Date of Publication (online):2021/04/07
Date of first Publication:2021/04/07
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2022/10/25
Tag:Biophysical models; Computational models; Computational neuroscience; Computational science; Computer science
Volume:11
Issue:111765
Article Number:111765
Page Number:16
First Page:1
Last Page:16
Note:
We acknowledge the financial support from the National Scholarship Programme of the Slovak Republic provided by the Slovak Academic Information Agency (SAIA) to M.T. This work was supported by BMBF (No. 031L0229—HUMANEUROMOD) to P.J.
Note:
The datasets generated during and analyzed during the current study are available in the GitHub repository, https://github.com/tomko-neuron/HippoUnit.
HeBIS-PPN:505166208
Institutes:Medizin
Wissenschaftliche Zentren und koordinierte Programme / Interdisziplinäres Zentrum für Neurowissenschaften Frankfurt (IZNF)
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0