Messungen und Berechnungen zu longitudinalen und transversalen Shuntimpedanzen einer Elektronen-Positronen-Linearbeschleuniger-Struktur

  • Mikrowellen-Linearbeschleuniger arbeiten im allgemeinen mit einer geringen Stoßfrequenz. Um dennoch eine gute Luminosität zu erreichen, ist es erforderlich, eine große Teilchenzahl pro Bunch und einen sehr kleinen Strahlquerschnitt am Kollisionspunkt zu erreichen. Vor dem Hauptbeschleuniger sorgen entsprechende Quellen und die Dämpfungsringe für eine geringe Emittanz. Im Idealfall werden die Teilchenpakete vom Hauptbeschleuniger ausschließlich longitudinal beschleunigt. Bedingt durch höhere Moden kann es hier jedoch zum BBU (siehe Abschnitt 1.2) mit einer Verschlechterung der Strahlqualität oder gar Strahlverlust kommen. Dieser Effekt wird umso stärker, je größer die Teilchenzahl pro Bunch ist. Um den Einsatzpunkt für den BBU quantitativ zu bestimmen, ist es erforderlich, die Shuntimpedanzen der Störmoden zu kennen [1, 2]. Ziel dieser Arbeit war es, die Shuntimpedanzen aller Moden der ersten drei Pass-Bänder zu bestimmen. Hierzu wurde ein weitgehend automatisierter Störkörper-Meßstand mit zugehöriger Schrittmotorsteuerung und Steuerprogramm aufgebaut, der es ermöglicht, eine große Zahl von Meßpunkten aufzunehmen und so die statistischen Fehler klein zu halten. Die Messungen der Monopol-Moden wurde nicht-resonant in Transmission durchgeführt. Die Messungen der Dipol-Moden erfolgten mit der nicht-resonanten zwei-Störkörper-Methode in Transmission. Diese Methode macht Störkörpermessungen auch an Moden möglich, die ein überwiegend transversales elektrisches Feld haben. Aus den Meßdaten wurden die Gütefaktoren und Shuntimpedanzen ohne Phasenfaktor sowie nach Rekonstruktion der Phasensprünge die Shuntimpedanzen mit Phasenfaktor und die Transittime-Faktoren berechnet. Hierzu wurde ein Satz von Auswertungs-Programmen geschrieben. Parallel zu den Messungen wurden alle gesuchten Größen auch numerisch mit dem Programm MAFIA berechnet. Bei den Monopol-Moden zeigte sich eine gute Übereinstimmung zwischen Messung und numerischer Rechnung bei den Gütefaktoren und den longitudinalen Shuntimpedanzen ohne Phasenfaktor. Die Bestimmung der longitudinalen Shuntimpedanzen mit Phasenfaktor durch Rekonstruktion der Phasensprünge funktioniert bei großen Transittime- Faktoren gut. Bei sehr kleinen Transittime-Faktoren ist mit diesem Verfahren nur noch die Aussage möglich, daß die longitudinalen Shuntimpedanzen mit Phasenfaktor bzw. der Transittime-Faktor klein sind. Die genauen Werte hängen stark von kleinen Fehlern sowohl bei der Messung als auch in der Geometrie der Cavity ab. Moden mit sehr kleinem Transittime-Faktor beeinflussen den Strahl jedoch nicht wesentlich, so daß diese qualitative Angabe ausreichend ist. Von den Moden des TM01-Pass-Bandes hat nur die Beschleuniger-Mode einen großen Transittime-Faktor. Alle anderen Moden haben einen erheblich kleineren Transittime-Faktor. Bei den Dipol-Moden des zweiten und dritten Pass-Bandes zeigte sich eine Aufspaltung in zwei azimutale Polarisationsrichtungen, was auf einen kleinen Geometriefehler der Cavity schließen läßt. Die Polarisationsrichtung dreht sich vom einen zum anderen Ende der Cavity um etwa 10°. Da es sich um eine kleine Abweichung handelt, wurden die weiteren Messungen nur für eine der beiden Polarisationsrichtungen durchgeführt. Im TE/TM-Dipol-Pass-Band gibt es mehrere Moden, die wegen ihrer recht hohen transversalen Shuntimpedanz mit Phasenfaktor als Störmoden in Frage kommen. Die numerisch berechneten Werte stimmen bei diesen Moden relativ gut mit den gemessenen Werten überein. Wie schon bei den Monopol-Moden weichen die Werte für die Moden mit geringem Transittime-Faktor voneinander ab. Am TE-artigen Ende des Pass-Bandes werden die gemessenen Werte aufgrund der begrenzten Selektivität ungenau. Es ist allerdings zu bedenken, daß die gleichen kleinen Geometriefehler, die eine Polarisation bewirkt haben, auch für die Abweichungen bei den kleinen Transittime-Faktoren verantwortlich sein können. Im TM/TE-Dipol-Pass-Band ist die transversale Shuntimpedanz ohne Phasenfaktor bei allen Moden größer als im TE/TM-Pass-Band. Auch hier haben mehrere der Moden eine hohe transversale Shuntimpedanz mit Phasenfaktor. Die numerischen Berechnungen stimmen für dieses Pass-Band besser mit den Messungen überein als im TE/TM-Pass- Band. Mit den gemessenen Werten ist es möglich, den Einsatzpunkt für den BBU unter Berücksichtigung aller Moden der ersten drei Pass-Bänder zu bestimmem. Für den späteren Einsatz im Beschleuniger ist geplant, die Cavities mit zwei HOM-Dämpfern an den Enden auszustatten. Mit den gemessenen Werten kann berechnet werden, wie groß die Wirkung der Dämpfer sein muß, um bei dem vorgesehenen Strahl einen BBU-freien Betrieb zu ermöglichen. Bei der Vermessung der weiteren Pass-Bänder gibt es noch mehrere Probleme zu lösen. Zum einen überlappen bei den höheren Moden die Bänder einander. Dies erschwert die Identifikation der Moden bei der Messung. Zum anderen gelangt man schnell zu Frequenzen, die oberhalb der jeweiligen Cut-Off-Frequenz für den entsprechender Wellentyp im Strahlrohr liegen. Moden oberhalb Cut-Off können über mehrere Cavities miteinander koppeln und dabei neue Moden über viele Cavities ausbilden. Um die Gefährlichkeit dieser Moden für die Strahlqualität zu untersuchen, ist es erforderlich, die Übertragungscharakteristik (S-Parameter) der gesamten Cavity mit Strahlrohren zu bestimmen. An solchen Messungen wird bereits gearbeitet. Ein anderer Punkt, der näher zu untersuchen wäre, ist der Einfluß kleiner mechanischer Veränderungen auf die transversalen Shuntimpedanzen der Störmoden. Die TESLACavity ist mechanisch relativ instabil. Solche Veränderungen können daher schon durch die elekromagnetischen Kräfte der gepulsten Beschleuniger-Mode auftreten.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Claudius PeschkeGND
URN:urn:nbn:de:hebis:30-19544
Document Type:Diploma Thesis
Language:German
Date of Publication (online):2005/10/24
Year of first Publication:1995
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2005/10/24
Edition:2. überarb. Ausg.
Page Number:143
Source:2. überarbeitete Ausgabe, http://sunkist.physik.uni-frankfurt.de/Dipl_CP/PDF/Diplomarbeit.pdf
HeBIS-PPN:18491504X
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht