Das GABAerge System im Nucleus suprachiasmaticus von Goldhamstern (Mesocricetus auratus) : Beziehungen zum diurnalen und zum Schlaf-Wach-Rhythmus

  • Der Nucleus suprachiasmaticus (SCN) ist der übergeordnete circadiane Schrittmacher (die “Tageszeitenuhr“) der Säugetiere. Er generiert den circadianen Rhythmus und synchronisiert diesen mit den diurnalen Signalen (Zeitgebern) aus der physikalischen Umwelt. Die Generierung der circadianen Rhythmik findet innerhalb einzelner SCN-Neurone (“clock cells“), die einen Multi-Oszillatoren-Veband bilden, statt. Die asynchronen Individualrhythmen der “clock cells“ werden zu einem gemeinsamen Haupt-Rhythmus, den circadianen Rhythmus, synchronisiert. Die entscheidende Rolle bei der Synchronisation der Individual-Rhythmen wird dem inhibitorischen – in fast allen SCN-Neuronen vorkommenden – Neurotransmitter Gamma- Amino-Buttersäure (GABA) zugeschrieben. Der gemeinsame Haupt-Rhythmus wird weiterhin durch exogene Zeitgeber auf die 24-stündige Periodik der Umweltsignale getriggert. Der dafür wichtigste Zeitgeber ist das Licht. Die Licht-Informationen werden retinal perzipiert und chemisch durch den Neurotransmitter Glutamat an den SCN übermittelt. Der Schlaf – als prominente Komponente circadianer Rhythmen – scheint ebenso vom GABAergen System des SCN gesteuert zu werden. In der vorliegenden Arbeit wurde das GABAerge System von Goldhamstern einschließlich seines glutamatergen Eingangssystems und der GABAergen Efferenzen analysiert. Diurnale Fluktuationen der untersuchten Komponenten des GABAergen Netzwerkes wurden auf ihre Beteiligung an Synchronisationsvorgängen im SCN beleuchtet. Die semiquantitative Analyse mit Hilfe von HPLC, Immuncytochemie und Immunoblot- Verfahren erbrachte eindeutige diurnale Fluktuationen aller untersuchten Komponenten des GABAergen Systems im Goldhamster-SCN. Während der Dunkelphase wurde das GABAerge-System aktiviert: die GABA-Synthese (GAD56/67), der Gesamt-GABA-Gehalt und die GABA-Wiederaufnahme (Entsorgung) aus dem synaptischen Spalt durch GABA-Transporter (GAT-1) zeigten eine nächtliche Reaktivitätssteigerung. Dies wurde durch die Erhöhung der nächtlichen GABA-Freisetzung aus SCN-Gewebekulturen (slice-Kulturen) ergänzt. In einer weiteren Untersuchung wurde die Zusammensetzung des GABAA-Rezeptors, der an den Synchronisationsvorgängen im SCN beteiligt ist, näher charakterisiert. Im SCN von Goldhamstern wurden die GABAA-Rezeptor- Untereinheiten alpha 2, alpha 3, beta 1 und beta 2/3 (schwach vertreten) nachgewiesen. Weiterhin konnte gezeigt werden, dass das GABAerge System an der Schlafregulation beteiligt ist. Die Komponenten des GABAergen Systems (Gesamt-GABA, GAD56/67, GAT-1) im SCN von Goldhamstern wiesen während des Schlafs im Vergleich zum wachen Tier identischer photoperiodischer Phasenlage erhöhte Reaktivität auf. Die Komponenten des glutamatergen Systems, welchem die Lichtinformationsübermittlung an das GABAerge System im SCN obliegt, zeigten ebenfalls eine diurnale Fluktuation. Die Maxima der Immunreaktivität für die AMPA-Rezeptor-Untereinheiten (GluR1, GluR2/3) am Tage deuten auf eine optimale Beteiligung dieser Komponenten an der Lichtvermittlung und auf einen Triggereffekt von Glutamat hin. Der Gesamt-Glutamat-Gehalt im SCN wies zwar erhöhte Werte während der Nacht auf, jedoch konnte keine Aussage über die Menge des funktionellen Neurotransmitters gemacht werden, da nur ein Bruchteil der Gesamt-Glutamat- Menge als Neurotransmitter wirkt. Die AMPA-Rezeptor-Untereinheiten zeigten eine – im Vergleich zu wachen Tieren derselben photischen Phasenlage – erhöhte Reaktivität bei schlafenden Goldhamstern. Die Hochregulation der GABAergen Systems während der Nacht unterstützt die Hypothese, dass GABA-Pulse – verabreicht zu einem bestimmten Tageszeit – Rhythmen individueller SCN-Neurone (“clock cells“) synchronisieren können. Die Synchronisation der GABAAusschüttung zu bestimmten Tageszeiten aus allen SCN-Neuronen wird durch das glutamaterge System getrieben. Alle untersuchten Komponenten zeigten dabei konsensuelle Reaktivitätsmuster, die als erhebliche Kontrastverstärkung der Hell- und Dunkelphase gewertet werden müssen. Die Unterschiede in der Reaktivität des GABAergen und glutamatergen Systems zwischen schlafenden und phasengleich untersuchten wachen Tieren stellen deren große Bedeutung für die Schlafregulation heraus.

Download full text files

  • Dissertation_Oleschko.pdf
    deu

    Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Gabriele OleschkoGND
URN:urn:nbn:de:hebis:30-30760
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Frank Nürnberger, Günther SchmalzingORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/07/28
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/02/21
Release Date:2006/07/28
GND Keyword:Goldhamster; Nucleus suprachiasmaticus; Tagesrhythmus; GABA-Rezeptor; Schlaf-Wach-Rhythmus
Page Number:140
First Page:III
Last Page:131
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:349961662
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG