Produktion neutraler seltsamer Teilchen in ultra-relativistischen Blei-Blei-Kollisionen

  • Bei der Kollision ultra-relativistischer Schwerionen wird die Kernmaterie extrem verdichtet und erhitzt. Die dabei erzeugte Energiedichte könnte ausreichen, um für kurze Zeit in einem begrenzten Volumen ein Quark-Gluon-Plasma entstehen zu lassen. Dieser Zustand der Materie, bei dem die Quarks und Gluonen nicht mehr in Hadronen gebunden sind, lag möglicherweise innerhalb der ersten Millisekunde nach dem Urknall vor und wird im Inneren von schweren Neutronensternen erwartet. Das NA49-Experiment am SPS-Beschleuniger des CERN untersucht hauptsächlich die Produktion von Hadronen in ultra-relativistischen Blei-Blei-Kollisionen. Eine erhöhte Produktion seltsamer Teilchen ist eine der vorgeschlagenen Signaturen für das Auftreten eines Quark-Gluon-Plasmas. Neutrale seltsame Teilchen werden aus den Spuren ihrer geladenen Zerfallsprodukte, die diese in den großvolumigen Spurendriftkammern (TPC) des NA49-Experiments hinterlassen, rekonstruiert. Bei der Auslese der TPCs entstehen Datenmengen von ca. 8 TByte (8 x 10 exp 12 Byte) pro Strahlzeit. Diese riesigen Datenmengen und die aufwendige Spurrekonstruktion stellen hohe Anforderungen an die Software-Infrastruktur. Daher wurde zur Vereinfachung und Modularisierung der Software-Entwicklung eine Software-Entwicklungs- und Analyseumgebung konzipiert und implementiert. Sie basiert auf dem Client-Server-Prinzip und kann über ein heterogenes TCP/IPNetzwerk aus UNIX-Workstations verteilt werden. Der zentrale Bestandteil des Systems ist der Daten-Server, der Datenobjekte mit persistenten Relationen verwaltet und die Kommunikation mit den Clients zur Steuerung des Systems übernimmt. Programmierschnittstellen (API) für verschiedene Sprachen (C, FORTRAN, C++, Fortran90) erlauben eine einfache Entwicklung von Clients, beispielsweise für die Datenanalyse und -visualisierung. Für die Rekonstruktion neutraler seltsamer Teilchen wurden 93497 zentrale Blei-Blei-Ereignisse aus der Strahlzeit im Herbst 1995 analysiert. Aus den Rohdaten der zweiten Vertex-TPC (VTPC2), die zur Bestimmung der Impulse in einem Magnetfeld positioniert ist, wurden zunächst die Ladungs-Cluster und dann die Teilchenbahnen rekonstruiert. Mit diesen Spuren wurden anschließend die Zerfalls-Vertices von neutralen seltsamen Teilchen gesucht. Dabei wurde neben den tatsächlichen Vertices auch ein Untergrund von zufälligen Kombinationen gefunden. Das Verhältnis von Signal zu kombinatorischem Untergrund wurde durch die Anwendung von Qualitätskriterien optimiert. Die Phasenraumakzeptanz liegt für die drei untersuchten Teilchen Lambda, Antilambda und K 0 s in den Rapiditäts-Intervallen 2,9 < y lambda < 3,9, 3,0 < y antilambda < 3,8 und 3,25 <= yK < 4,05. Der verwendete Transversalimpuls-Bereich ist abhängig von der Teilchenspezies und dem betrachteten Rapiditätsintervall und liegt zwischen 0,6 GeV/c und 2,4 GeV/c. Die inversen Steigungsparameter der Transversalimpuls-Spektren sind rapiditätsabhängig. Im Rapiditätsintervall, das jeweils am nächsten an Midrapidity liegt, betragen sie T lambda = 281 +- 13 MeV, T antilambda = 308 +- 28 MeV und T K 0 s = 239 +- 9 MeV. Die beobachtete lineare Abhängigkeit der inversen Steigungsparameter von der Ruhemasse und die Überschreitung der Hagedornschen Grenztemperatur für ein ideales Hadronengas sind ein Indiz für die Existenz eines kollektiven transversalen Flusses. Im Rahmen eines hydrodynamischen Modells ergibt sich eine mittlere transversale Flußgeschwindigkeit <vT> ~ 0,65 c und eine Freeze-out-Temperatur T fo ~ 110 MeV. Während die Rapiditäts-Verteilungen für Antilamda und K 0 s bei Midrapidity ein deutliches Maximum aufweisen, zeigt die Rapiditäts-Verteilung der Lambda einen flachen Verlauf. Die Multiplizitäten im Rapiditätsintervall bei oder nahe Midrapidity betragen 19,2 +- 1,1 für Lambda, 3,2 +- 0,3 für Antilambda und 27,1 +- 1,8 für K 0 s . Aufgrund der in der Analyse verwendeten Qualitätskriterien kann angenommen werden, daß die Spektren von Lambda und Antilambda in erster Näherung frei von Lambda und Antilambda aus den Zerfällen mehrfach-seltsamer Baryonen sind. Aus dem Vergleich mit den Rapiditäts-Spektren, die von anderen NA49-Gruppen mit unterschiedlichen Analyseansätzen ermittelt wurden, konnte der systematische Fehler der Analyse auf etwa 20-30% abgeschätzt werden. Beim Vergleich der Rapiditäts-Spektren von verschiedenen Stoßsystemen bei der gleichen Energie besitzen die Lambda-Verteilungen für Schwefel-Schwefel- (S+S) und Blei-Blei-Stöße (Pb+Pb) die gleiche flache Form. Hingegen weist die p+p-Verteilung zwei deutliche Maxima auf. Die Rapiditäts-Verteilungen von K 0 s und Antilambda zeigen für alle drei Stoß-Systeme annähernd die gleiche Form. Während bei den Lambda- und K 0 s -Verteilungen die Teilchenausbeute beim Übergang von S+S zu Pb+Pb etwa mit der Anzahl der Partizipanten skaliert, ist der Anstieg bei den Antilambda nur halb so groß. Im Vergleich zu p+p nimmt die Produktion aller drei Spezies um etwa das Zweifache der Partizipanten-Anzahl zu. Die Lambda-Multiplizität bei Midrapidity wird durch Rechnungen des UrQMD-Modells sehr gut reproduziert. Allerdings scheint die Form des Lambda-Rapiditäts-Spektrums flacher als die des Modells zu sein. Bei den Antilambda - und K 0 s -Spektren wird die Form der Verteilung besser durch das Modell beschrieben, jedoch reproduziert es nicht die Gesamtmultiplizität. Während die K 0 s-Daten um 30% unter der UrQMD-Verteilung liegen, wird für die Antilambda nur ungefähr die Hälfte der tatsächlich gemessenen Multiplizität vorhergesagt. Eine Abschätzung für die Anzahl von s- und s-Quarks, die bei einem zentralen Blei-Blei-Stoß erzeugt werden, zeigt eine Übereinstimmung innerhalb der systematischen Fehler dieser Abschätzung und ist damit konsistent mit der erwarteten Erhaltung der Seltsamkeits-Quantenzahl. Das Antilambda/Lambda-Verhältnis bei Midrapidity beträgt 0,17 +- 0,02. Der Vergleich der Verhältnisse von seltsamen zu nicht-seltsamen Teilchen zeigt keinen signifikanten Unterschied zwischen Proton-Proton- und Proton-Kern-Stößen; beim Übergang zu S+S kommt es zu einer Erhöhung der Seltsamkeits-Produktion um etwa einen Faktor 2. In Blei-Blei-Kollisionen kommt es jedoch zu keiner weiteren Erhöhung. Mit steigender Anzahl der Partizipanten, die proportional zur Größe des Reaktionsvolumens ist, kommt es zu einer Sättigung der Strangeness-Produktion. Die Energieabhängigkeit der Strangeness-Produktion zeigt für Nukleon-Nukleon-Stöße (N+N) ein anderes Verhalten als für Kern-Kern-Kollisionen (A+A). Während sie für N+N-Stöße zwischen AGS- und SPS-Energien um einen Faktor 2 zunimmt, kommt es bei A+A-Kollsionen zu einer Sättigung auf dem AGS-Niveau. Dieser Unterschied kann durch eine Reduktion der Masse der Seltsamkeitsträger bei den A+A-Stößen erklärt werden, wie sie in einem Quark-Gluon-Plasma erwartet wird. Dies läßt vermuten, daß der Phasenübergang von einem Quark-Gluon-Plasma zu einem Hadronengas im Energiebereich zwischen AGS und SPS stattfindet.

Download full text files

  • thesis_christian_bormann.pdf
    deu

    Zugriffsbeschränkung: Bestandssicherung, Zugriff nur im internen UB-Netz

  • thesis_christian_bormann.ps
    deu

    Zugriffsbeschränkung: Bestandssicherung, Zugriff nur im internen UB-Netz

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christian BormannGND
URN:urn:nbn:de:hebis:30-29111
Referee:Herbert Ströbele
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/06/29
Year of first Publication:1998
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:1999/02/25
Release Date:2006/06/29
GND Keyword:Blei-208-Reaktion; Schwerionenreaktion; Ultrarelativistischer Bereich; Strange-Teilchen; Neutrales Teilchen
Note:
Auch Berlin : dissertation.de, 1999, ISBN: 3-933342-66-X ; Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung.
HeBIS-PPN:183712218
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG