Entwicklung eines Prototypen zur Neutronenproduktion via 7Li(p,n)

  • Der für diese Arbeit entwickelte Prototyp zur Neutronenproduktion hat sich bereits während der ersten Tests bewährt, womit schnell festgestellt wurde, dass sich das Grunddesign des Prototypen für die späteren Experimente am FRANZ eignet. Wie man gesehen hat, entstand die verwendete Revision in mehreren Schritten, da immer wieder aus gemachten Planungsfehlern gelernt werden musste. Zusätzlich gab es bei der Planung mehrere Beschränkungen, die beachtet werden mussten, dazu zählt unter anderem die Form des Prototypen, um ohne Probleme den Bedampfungstand des FZK verwenden zu können. Das neue Kühlsystem verlangte während der Planung besonderer Aufmerksamkeit. Bei Experimenten wie am IRMM oder FZK kann aufgrund der geringen Leistung des Beschleunigers mit einer Luftkühlung oder einfachen Wasserkühlung gearbeitet werden. Diese Arten der Kühlung beeinflussen den Neutronenfluss nicht. Bei FRANZ muss aufgrund der im Vergleich zu den vorher genannten Experimenten viel höheren Leistung von 4 kW, ein gänzlich neuer Kühlungsansatz verwendet werden. Um die Leistung vom Target abzuführen, muss nun ein viel größerer Bereich gekühlt werden, um die entstehenden Temperaturen unter Kontrolle zu halten. Auch das Vorhersagen der entstehenden Temperaturen war nur unter Annahme mehrerer Parameter möglich. Durch die komplexe Struktur des Prototypen stieß die Berechnung des Temperaturprofis mit einfachen analytischen Mitteln schnell an ihre Grenzen. Aus diesem Grund wurden für diese Arbeit jeweils nach der Einführung der Wärmeleitung vereinfachte Annahmen gemacht, um dennoch Berechnungen durchführen zu können. Dass dies nicht immer zu exakten Ergebnissen führt, wurde während des Prozesses mehrfach festgestellt. Dennoch konnten so die Größenordnungen der Temperaturen bestimmt werden, was letztlich zur Auslegung des Kühlsystems beitrug. Die Lösung, für die sich entschieden wurde, war die Kühlung der Rückseite des Target mit Wasser. Der große Nachteil dieser neuen, aber notwendigen Kühllösung, sind die Materialien, die nun den Neutronenfluss aus der Li(p,n) Reaktion beeinflussen. Wichtig war es eine Balance zwischen Schichtdicken von Kupfer und Wasser, die für die mechanische und thermische Stabilität notwendig waren, und der Qualität des erhaltenen Spektrums zu finden. Hierfür wurden zahlreiche Simulationen mit GEANT 3 angefertigt, um die Einflüsse beider Stoffe abschätzen zu können, wobei sich schließlich herausstellte, dass die Schichtdicke von Wasser die Neutronen am meisten beeinflusst. Da Wasser stark moderierend auf Neutronen wirkt, stellte man fest, dass man bei Experimenten vor allem hochenergetische Neutronen verliert. Konsequenz war die strikte Kontrolle der Wasserdicke.

Download full text files

  • fiebiger_12_bachelor.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stefan FiebigerGND
URN:urn:nbn:de:hebis:30:3-337021
URL:http://exp-astro.physik.uni-frankfurt.de/docs/fiebiger_12_bachelor.pdf
Document Type:Bachelor Thesis
Language:German
Year of Completion:2012
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2014/07/17
Note:
Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL.
HeBIS-PPN:342750909
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG