Refine
Year of publication
- 2021 (2)
Document Type
- Working Paper (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Centrality (1)
- Covid-19 (1)
- ETFs (1)
- Financial Crises (1)
- High Frequency Data (1)
- International Finance (1)
- Network theory (1)
The centrality of the United States in the global financial system is taken for granted, but its response to recent political and epidemiological events has suggested that China now holds a comparable position. Using minute-by-minute data from 2012 to 2020 on the financial performance of twelve country-specific exchange-traded funds, we construct daily snapshots of the global financial network and analyze them for the centrality and connectedness of each country in our sample. We find evidence that the U.S. was central to the global financial system into 2018, but that the U.S.-China trade war of 2018–2019 diminished its centrality, and the Covid-19 outbreak of 2019–2020 increased the centrality of China. These indicators may be the first signals that the global financial system is moving from a unipolar to a bipolar world.
Non-standard errors
(2021)
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in sample estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: non-standard errors. To study them, we let 164 teams test six hypotheses on the same sample. We find that non-standard errors are sizeable, on par with standard errors. Their size (i) co-varies only weakly with team merits, reproducibility, or peer rating, (ii) declines significantly after peer-feedback, and (iii) is underestimated by participants.