Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- 16p11.2 (1)
- Aggression (1)
- Angststörungen (1)
- Autism (1)
- Autismus-Spektrum-Störungen (1)
- CNV (1)
- CRISPR/Cas9 (1)
- DNA methylation (1)
- Elternurteil (1)
- Environmental impacts (1)
Institute
Neuropsychiatric disorders are complex, highly heritable but incompletely understood disorders. The clinical and genetic heterogeneity of these disorders poses a significant challenge to the identification of disorder related biomarkers. Besides significant progress in unveiling the genetic basis of these disorders, the underlying causes and biological mechanisms remain obscure. With the advancement in the array, sequencing, and big data technologies, a huge amount of data is generated from individuals across different platforms and in various data structures. But there is a paucity of bioinformatics tools that can integrate this plethora of data. Therefore, there is a need to develop an integrative bioinformatics data analysis tool that combines biological and clinical data from different data types to better understand the underlying genetics.
This thesis presents a bioinformatics pipeline implementing data from different platforms to provide a thorough understanding of the genetic etiology of a neuropsychiatric quantitative as well as a qualitative trait of interest. Throughout the thesis, we present two aspects: one is the development and architecture of the bioinformatics pipeline named MApping the Genetics of neuropsychiatric traits to the molecular NETworks of the human brain (MAGNET). The other part demonstrates the implementation and usefulness of MAGNET analysing large Autism Spectrum Disorder (ASD) cohorts.
MAGNET is a freely available command-line tool available on GitHub (https://github.com/SheenYo/MAGNET). It is implemented within one framework using data integration approaches based on state-of-the-art algorithms and software to ultimately identify the genes and pathways genetically associated with a trait of interest. MAGNET provides an edge over the existing tools since it performs a comprehensive analysis taking care of the data handling and parsing steps necessary to communicate between the different APIs (Application Program Interface). Thus, this avoids the in-between data handling steps required by researchers to provide output from one analysis to the next. Moreover, depending on the size of the dataset users can deduce important information regarding their trait of interest within a time frame of a few days. Besides gaining insights into genetic associations, one of the central features is the mapping of the associated genes onto developing human brain implementing transcriptome data of 16 different brain regions starting from the 5th post-conceptional week to over 40 years of age.
In the second part as proof of concept, we implemented MAGNET on two ASD cohorts. ASD is a group of psychiatric disorders. Clinically, ASD is characterized by the following psychopathology: A) limitations in social interaction and communication, and B) restricted, repetitive behavior. The etiology of this disorder is extremely complex due to its heterogeneous clinical traits and genetics. Therefore, to date, no reliable biomarkers are identified. Here, the aim is to characterize the genetic architecture of ASD taking into account the two aforementioned ASD diagnostic domains. As well as to investigate if these domains are genetically linked or independent of each other. Moreover, we addressed the question if these traits share genetic risk with the categorical diagnosis of ASD and how much of the phenotypic variance of these traits can be explained by the underlying genetics.
We included affected individuals from two ASD cohorts, i.e. the Autism Genome Project (AGP) and a German cohort consisting of 2,735 and 705 families respectively. MAGNET was applied to each of the ASD subdomains as a quantitative dependent variable. MAGNET is divided into five main sections i.e. (1) quality check of the genotype data, (2) imputation of missing genotype data, (3) association analysis of genotype and trait data, (4) gene-based analysis, and (5) enrichment analysis using gene expression data from the human brain.
MAGNET was applied to each of the individual traits in each cohort to perform quality control of the genetic data and imputed the missing data in an automated fashion. MAGNET identified 292 known and new ASD risk genes. These genes were subsequently assigned to biological signaling pathways and gene ontologies via MAGNET. The underlying biological mechanisms converged with respect to neuronal transmission and development processes. By reconciling these genes with the transcriptome of the developing human brain, MAGNET was able to identify that the significant genes associated with the subdomains are expressed at specific time points in brain areas such as the hippocampus, amygdala, and cortical regions. Further, we found that ASD subdomains related to domain A but not
to domain B have a shared genetic etiology.
Parent ratings are often used for screening during the diagnostic evaluation of anxiety disorders. Clinically, it is important to correctly differentiate between anxiety and other psychiatric disorders and to distinguish specific anxiety disorders. The present study examined the validity of the screening results obtained by the Parent Questionnaire for Anxiety and Obsessive-Compulsive Disorders (FBB-ANZ). We exam- ined whether the FBB-ANZ discriminated (1) anxiety and other psychiatric disorders and (2) specific anxiety disorders in children and adoles- cents using ROC analyses. 972 parents of 4;00–11;11-year-old children and 12;00–17;11-year-old adolescents with anxiety disorders, depres- sive episodes, or externalizing disorders completed the FBB-ANZ. Discrimination of anxiety disorders and externalizing disorders in children (AUC = .72) and adolescents (AUC = .76) as well as depressive episodes in children (AUC = .77) was moderate. Good discrimination of different anxiety disorders was found only for separation anxiety in children (AUC = .84) and adolescents (AUC = .87). The results indicate the limited di- agnostic benefit of parent ratings for discriminating different anxiety disorders in children and adolescents. Potential explanations for the re- sults are critically discussed.
Background: Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome.
Methods: The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain.
Results: QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala.
Conclusions: In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers.
Autism spectrum disorders (ASD) are highly heritable and are characterized by deficits in social communication and restricted and repetitive behaviors. Twin studies on phenotypic subdomains suggest a differing underlying genetic etiology. Studying genetic variation explaining phenotypic variance will help to identify specific underlying pathomechanisms. We investigated the effect of common variation on ASD subdomains in two cohorts including >2500 individuals. Based on the Autism Diagnostic Interview-Revised (ADI-R), we identified and confirmed six subdomains with a SNP-based genetic heritability h2SNP = 0.2–0.4. The subdomains nonverbal communication (NVC), social interaction (SI), and peer interaction (PI) shared genetic risk factors, while the subdomains of repetitive sensory-motor behavior (RB) and restricted interests (RI) were genetically independent of each other. The polygenic risk score (PRS) for ASD as categorical diagnosis explained 2.3–3.3% of the variance of SI, joint attention (JA), and PI, 4.5% for RI, 1.2% of RB, but only 0.7% of NVC. We report eight genome-wide significant hits—partially replicating previous findings—and 292 known and novel candidate genes. The underlying biological mechanisms were related to neuronal transmission and development. At the SNP and gene level, all subdomains showed overlap, with the exception of RB. However, no overlap was observed at the functional level. In summary, the ADI-R algorithm-derived subdomains related to social communication show a shared genetic etiology in contrast to restricted and repetitive behaviors. The ASD-specific PRS overlapped only partially, suggesting an additional role of specific common variation in shaping the phenotypic expression of ASD subdomains.
Die Ätiologie der Autismus-Spektrum-Störungen (ASS) ist in genetischen Risikofaktoren sowie der Interaktion von genetischen und biologisch wirksamen Umweltrisikofaktoren begründet. ASS werden aufgrund von Verhaltensmerkmalen, nämlich bleibend eingeschränkter sozialer Kommunikation, sowie durch stereotypes Verhalten, sensorische und Sonderinteressen diagnostiziert. Hinsichtlich des genetischen Hintergrundes besteht eine hohe genetische Heterogenität, d. h., die genetischen Ursachen sind vielfältig und individuell oft sehr unterschiedlich ausgeprägt. Allerdings konvergieren diese Ursachen in bestimmten biologischen Mechanismen und überlappenden biologischen Endstrecken, deren Veränderung sehr wahrscheinlich den autismusspezifischen Verhaltensmerkmalen zugrunde liegt. Die vorliegende, selektive Literaturübersicht summiert die genetischen Befunde und fokusiert sich insbesondere auf Mechanismen und Endstrecken, die aufgrund der neueren Forschung immer besser charakterisiert werden. Der Artikel schließt mit Hinweisen zur klinischen Relevanz der aktuellen Befunde sowie offenen Fragen der translationalen Forschung.
Conduct Disorder (CD) is an impairing psychiatric disorder of childhood and adolescence characterized by aggressive and dissocial behavior. Environmental factors such as maternal smoking during pregnancy, socio-economic status, trauma, or early life stress are associated with CD. Although the number of females with CD is rising in Western societies, CD is under-researched in female cohorts. We aimed at exploring the epigenetic signature of females with CD and its relation to psychosocial and environmental risk factors. We performed HpaII sensitive genome-wide methylation sequencing of 49 CD girls and 50 matched typically developing controls and linear regression models to identify differentially methylated CpG loci (tags) and regions. Significant tags and regions were mapped to the respective genes and tested for enrichment in pathways and brain developmental processes. Finally, epigenetic signatures were tested as mediators for CD-associated risk factors. We identified a 12% increased methylation 5’ of the neurite modulator SLITRK5 (FDR = 0.0046) in cases within a glucocorticoid receptor binding site. Functionally, methylation positively correlated with gene expression in lymphoblastoid cell lines. At systems-level, genes (uncorr. P < 0.01) were associated with development of neurons, neurite outgrowth or neuronal developmental processes. At gene expression level, the associated gene-networks are activated perinatally and during early childhood in neocortical regions, thalamus and striatum, and expressed in amygdala and hippocampus. Specifically, the epigenetic signatures of the gene network activated in the thalamus during early childhood correlated with the effect of parental education on CD status possibly mediating its protective effect. The differential methylation patterns identified in females with CD are likely to affect genes that are expressed in brain regions previously indicated in CD. We provide suggestive evidence that protective effects are likely mediated by epigenetic mechanisms impairing specific brain developmental networks and therefore exerting a long-term effect on neural functions in CD. Our results are exploratory and thus, further replication is needed.