Refine
Year of publication
Document Type
- Article (54)
- Conference Proceeding (2)
- Preprint (2)
Language
- English (58)
Has Fulltext
- yes (58)
Is part of the Bibliography
- no (58)
Keywords
- 140Ce (1)
- Electromagnetic transitions (1)
- MACS (1)
- Models & methods for nuclear reactions (1)
- Neutron physics (1)
- Nuclear reactions (1)
- Radiative capture (1)
- Resonance reactions (1)
- capture (1)
- cerium (1)
Institute
- Physik (57)
- Biochemie, Chemie und Pharmazie (1)
An accurate measurement of the 140Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140Ce Maxwellian-averaged cross-section.
Neutron capture on 241Am plays an important role in the nuclear energy production and also provides valuable information for the improvement of nuclear models and the statistical interpretation of the nuclear properties. A new experiment to measure the 241Am(n, γ) cross section in the thermal region and the first few resonances below 10 eV has been carried out at EAR2 of the n_TOF facility at CERN. Three neutron-insensitive C6D6 detectors have been used to measure the neutron-capture gamma cascade as a function of the neutron time of flight, and then deduce the neutron capture yield. Preliminary results will be presented and compared with previously obtained results at the same facility in EAR1. In EAR1 the gamma-ray background at thermal energies was about 90% of the signal while in EAR2 is up to a 25 factor much more favorable signal to noise ratio. We also extended the low energy limit down to subthermal energies. This measurement will allow a comparison with neutron capture measurements conducted at reactors and using a different experimental technique.
The radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n_TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.
Background: The photon strength functions (PSFs) and nuclear level density (NLD) are key ingredients for calculation of the photon interaction with nuclei, in particular the reaction cross sections. These cross sections are important especially in nuclear astrophysics and in the development of advanced nuclear technologies.
Purpose: The role of the scissors mode in the M1 PSF of (well-deformed) actinides was investigated by several experimental techniques. The analyses of different experiments result in significant differences, especially on the strength of the mode. The shape of the low-energy tail of the giant electric dipole resonance is uncertain as well. In particular, some works proposed a presence of the E1 pygmy resonance just above 7 MeV. Because of these inconsistencies additional information on PSFs in this region is of great interest.
Methods: The γ-ray spectra from neutron-capture reactions on the 234U, 236 U, and 238 U nuclei have been measured with the total absorption calorimeter of the n_TOF facility at CERN. The background-corrected sum-energy and multi-step-cascade spectra were extracted for several isolated s-wave resonances up to about 140 eV.
Results: The experimental spectra were compared to statistical model predictions coming from a large selection of models of photon strength functions and nuclear level density. No combination of PSF and NLD models from literature is able to globally describe our spectra. After extensive search we were able to find model combinations with modified generalized Lorentzian (MGLO) E1 PSF, which match the experimental spectra as well as the total radiative widths.
Conclusions: The constant temperature energy dependence is favored for a NLD. The tail of giant electric dipole resonance is well described by the MGLO model of the E1 PSF with no hint of pygmy resonance. The M1 PSF must contain a very strong, relatively wide, and likely double-resonance scissors mode. The mode is responsible for about a half of the total radiative width of neutron resonances and significantly affects the radiative cross section.
73Ge(n, γ ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT = 30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73Ge produced in stars, which would explain the low isotopic abundance of 73Ge in the solar system.
We have measured the radiative neutron-capture cross section and the total neutron-induced cross section of one of the most important isotopes for the s process, the 25Mg. The measurements have been carried out at the neutron time-of-flight facilities n_TOF at CERN (Switzerland) and GELINA installed at the EC-JRC-IRMM (Belgium). The cross sections as a function of neutron energy have been measured up to approximately 300 keV, covering the energy region of interest to the s process. The data analysis is ongoing and preliminary results show the potential relevance for the s process.
The neutron capture cross section of 154Gd was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in 154Gd. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modelling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted 154Gd(n,γ) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
Accurate measurement of the standard 235U(n,f) cross section from thermal to 170 keV neutron energy
(2020)
An accurate measurement of the 235U(n,f) cross section from thermal to 170 keV of neutron energy has recently been performed at n_TOF facility at CERN using 6Li(n,t)4He and 10B(n,α)7Li as references. This measurement has been carried out in order to investigate a possible overestimation of the 235U fission cross section evaluation provided by most recent libraries between 10 and 30 keV. A custom experimental apparatus based on in-beam silicon detectors has been used, and a Monte Carlo simulation in GEANT4 has been employed to characterize the setup and calculate detectors efficiency. The results evidenced the presence of an overestimation in the interval between 9 and 18 keV and the new data may be used to decrease the uncertainty of 235U(n,f) cross section in the keV region.
Accurate neutron capture cross section data for minor actinides (MAs) are required to estimate the production and transmutation rates of MAs in light water reactors with a high burnup, critical fast reactors like Gen-IV systems and other innovative reactor systems such as accelerator driven systems (ADS). Capture reactions of 244Cm open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf. In addition, 244Cm shares nearly 50% of the total actinide decay heat in irradiated reactor fuels with a high burnup, even after three years of cooling.
Experimental data for this isotope are very scarce due to the difficulties of providing isotopically enriched samples and because the high intrinsic activity of the samples requires the use of neutron facilities with high instantaneous flux. The only two previous experimental data sets for this neutron capture cross section have been obtained in 1969 using a nuclear explosion and, more recently, at J-PARC in 2010. The neutron capture cross sections have been measured at n_TOF with the same samples that the previous experiments in J-PARC. The samples were measured at n_TOF Experimental Area 2 (EAR-2) with three C6D6 detectors and also in Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC). Preliminary results assessing the quality and limitations of these new experimental datasets are presented for the experiments in both areas. Preliminary yields of both measurements will be compared with evaluated libraries for the first time.