Refine
Year of publication
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
- Optogenetics (5)
- Caenorhabditis elegans (3)
- Molecular neuroscience (3)
- B.1.617.1 (1)
- B.1.617.2 (1)
- BNT2b2 (1)
- Behavioral analysis (1)
- C. elegans (1)
- Ca2+ imaging (1)
- Cell membranes (1)
Optogenetic manipulation of neuronal activity through excitatory and inhibitory opsins has become an indispensable experimental strategy in neuroscience research. For many applications bidirectional control of neuronal activity allowing both excitation and inhibition of the same neurons in a single experiment is desired. This requires low spectral overlap between the excitatory and inhibitory opsin, matched photocurrent amplitudes and a fixed expression ratio. Moreover, independent activation of two distinct neuronal populations with different optogenetic actuators is still challenging due to blue-light sensitivity of all opsins. Here we report BiPOLES, an optogenetic tool for potent neuronal excitation and inhibition with light of two different wavelengths. BiPOLES enables sensitive, reliable dual-color neuronal spiking and silencing with single- or two-photon excitation, optical tuning of the membrane voltage, and independent optogenetic control of two neuronal populations using a second, blue-light sensitive opsin. The utility of BiPOLES is demonstrated in worms, flies, mice and ferrets.
Background and Purpose: The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers regulating numerous biological processes. Malfunctional cNMP signalling is linked to diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in Caenorhabditis elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and hyperpolarizing rhodopsins; yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarizers based on K+ currents.
Experimental Approach: For the characterization of photoactivatable nucleotidyl cyclases, we expressed the proteins alone or in combination with cyclic nucleotide-gated channels in muscle cells and cholinergic motor neurons. To investigate the extent of optogenetic cNMP production and the ability of the systems to depolarize or hyperpolarize cells, we performed behavioural analyses, measured cNMP content in vitro, and compared in vivo expression levels.
Key Results: We implemented Catenaria CyclOp as a new tool for cGMP production, allowing fine-control of cGMP levels. We established photoactivatable membrane-bound adenylyl cyclases, based on mutated versions (“A-2x”) of Blastocladiella and Catenaria (“Be,” “Ca”) CyclOp, as N-terminal YFP fusions, enabling more efficient and specific cAMP signalling compared to soluble bPAC, despite lower overall cAMP production. For hyperpolarization of excitable cells by two-component optogenetics, we introduced the cAMP-gated K+-channel SthK from Spirochaeta thermophila and combined it with bPAC, BeCyclOp(A-2x), or YFP-BeCyclOp(A-2x). As an alternative, we implemented the B. emersonii cGMP-gated K+-channel BeCNG1 together with BeCyclOp.
Conclusion and Implications: We established a comprehensive suite of optogenetic tools for cNMP manipulation, applicable in many cell types, including sensory neurons, and for potent hyperpolarization.
Influenza A (H1N1) 2009 : impact on Frankfurt in due consideration of health care and public health
(2010)
Background: In April 2009 a novel influenza A H1N1/2009 virus was identified in Mexico and in the United States which quickly spread around the world. Most of the countries established infection surveillance systems in order to track the number of (laboratory-confirmed) H1N1 cases, hospitalizations and deaths. Methods: The impact of the emergence of the novel pandemic (H1N1) 2009 virus on Frankfurt was statistically evaluated by the Health Protection Authority, City of Frankfurt am Main. Vaccination rates of the health care workers (HCWs) of the University Hospital Frankfurt were measured by the Occupational Health Service. Results: Although the virulence of pandemic (H1N1) 2009 seems to be comparable with seasonal influenza, a major patient load and wave of hospital admissions occurred in the summer of 2009. Even though the 2009 vaccination rate of the University Hospital Frankfurt (seasonal influenza [40.5%], swine flu [36.3%]) is better than the average annual uptake of influenza vaccine in the German health care system (approximately 22% for seasonal and 15% for swine flu), vaccination levels remain insufficient. However, physicians were significantly (p < 0.001) more likely to have been vaccinated against swine flu and seasonal influenza than nurses. Conclusions: The outbreak of the pandemic (H1N1) 2009 in April 2009 provided a major challenge to health services around the world. Nosocomial transmission of H1N1/2009 has been documented. Present experience should be used to improve pandemic preparedness plans and vaccination programs ought to target as many HCWs as possible.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a condition of abnormal heart rhythm (arrhythmia), induced by physical activity or stress. Mutations in ryanodine receptor 2 (RyR2), a Ca2+ release channel located in the sarcoplasmic reticulum (SR), or calsequestrin 2 (CASQ2), a SR Ca2+ binding protein, are linked to CPVT. For specific drug development and to study distinct arrhythmias, simple models are required to implement and analyze such mutations. Here, we introduced CPVT inducing mutations into the pharynx of Caenorhabditis elegans, which we previously established as an optogenetically paced heart model. By electrophysiology and video-microscopy, we characterized mutations in csq-1 (CASQ2 homologue) and unc-68 (RyR2 homologue). csq-1 deletion impaired pharynx function and caused missed pumps during 3.7 Hz pacing. Deletion mutants of unc-68, and in particular the point mutant UNC-68(R4743C), analogous to the established human CPVT mutant RyR2(R4497C), were unable to follow 3.7 Hz pacing, with progressive defects during long stimulus trains. The pharynx either locked in pumping at half the pacing frequency or stopped pumping altogether, possibly due to UNC-68 leakiness and/or malfunctional SR Ca2+ homeostasis. Last, we could reverse this ‘worm arrhythmia’ by the benzothiazepine S107, establishing the nematode pharynx for studying specific CPVT mutations and for drug screening.
The C. elegans nervous system is particularly well suited for optogenetic analyses of circuit function: Essentially all connections have been mapped, and light can be directed at the neuron of interest in the freely moving, transparent animals, while behavior is observed. Thus, different nodes of a neuronal network can be probed for their role in controlling a particular behavior, using different optogenetic tools for photo-activation or –inhibition, which respond to different colors of light. As neurons may act in concert or in opposing ways to affect a behavior, one would further like to excite these neurons concomitantly, yet independent of each other. In addition to the blue-light activated Channelrhodopsin-2 (ChR2), spectrally red-shifted ChR variants have been explored recently. Here, we establish the green-light activated ChR chimera C1V1 (from Chlamydomonas and Volvox ChR1′s) for use in C. elegans. We surveyed a number of red-shifted ChRs, and found that C1V1-ET/ET (E122T; E162T) works most reliable in C. elegans, with 540–580 nm excitation, which leaves ChR2 silent. However, as C1V1-ET/ET is very light sensitive, it still becomes activated when ChR2 is stimulated, even at 400 nm. Thus, we generated a highly efficient blue ChR2, the H134R; T159C double mutant (ChR2-HR/TC). Both proteins can be used in the same animal, in different neurons, to independently control each cell type with light, enabling a further level of complexity in circuit analyses.
Der unscheinbare Fadenwurm "C. elegans" ist einer der ersten und bis heute wichtigsten Modellorganismen der Optogenetik. Zwei Frankfurter Arbeitsgruppen gelang es vor zehn Jahren erstmals, das Tier genetisch mit lichtaktivierbaren Ionenkanälen auszustatten und seine Bewegungen mit Licht zu steuern. Inzwischen studieren Forscher an dem durchsichtigen Wurm auch Prozesse, die für die medizinische Forschung bedeutsam sind – etwa die Entstehung und Behandlung genetisch bedingter Herz-Rhythmus-Störungen.
Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.
The capacity of convalescent and vaccine-elicited sera and monoclonal antibodies (mAb) to neutralize SARS-CoV-2 variants is currently of high relevance to assess the protection against infections.
We performed a cell culture-based neutralization assay focusing on authentic SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.427/B.1.429 (Epsilon), all harboring the spike substitution L452R.
We found that authentic SARS-CoV-2 variants harboring L452R had reduced susceptibility to convalescent and vaccine-elicited sera and mAbs. Compared to B.1, Kappa and Delta showed a reduced neutralization by convalescent sera by a factor of 8.00 and 5.33, respectively, which constitutes a 2-fold greater reduction when compared to Epsilon. BNT2b2 and mRNA1273 vaccine-elicited sera were less effective against Kappa, Delta, and Epsilon compared to B.1. No difference was observed between Kappa and Delta towards vaccine-elicited sera, whereas convalescent sera were 1.5-fold less effective against Delta, respectively. Both B.1.617 variants Kappa (+E484Q) and Delta (+T478K) were less susceptible to either casirivimab or imdevimab.
In conclusion, in contrast to the parallel circulating Kappa variant, the neutralization efficiency of convalescent and vaccine-elicited sera against Delta was moderately reduced. Delta was resistant to imdevimab, which however, might be circumvented by a combination therapy with casirivimab together.
C. elegans is used extensively as a model system in the neurosciences due to its well defined nervous system. However, the seeming simplicity of this nervous system in anatomical structure and neuronal connectivity, at least compared to higher animals, underlies a rich diversity of behaviors. The usefulness of the worm in genome-wide mutagenesis or RNAi screens, where thousands of strains are assessed for phenotype, emphasizes the need for computational methods for automated parameterization of generated behaviors. In addition, behaviors can be modulated upon external cues like temperature, O2 and CO2 concentrations, mechanosensory and chemosensory inputs. Different machine vision tools have been developed to aid researchers in their efforts to inventory and characterize defined behavioral “outputs”. Here we aim at providing an overview of different worm-tracking packages or video analysis tools designed to quantify different aspects of locomotion such as the occurrence of directional changes (turns, omega bends), curvature of the sinusoidal shape (amplitude, body bend angles) and velocity (speed, backward or forward movement).