Refine
Document Type
- Article (9)
- Conference Proceeding (1)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- ASCT (1)
- Airways (1)
- CHIP (1)
- Chronic obstructive airway disease (1)
- Cytokine (1)
- Developmental biology (1)
- Lung (1)
- Nephrons (1)
- PD-1 (1)
- PD-L1 (1)
Institute
Background: Tobacco is a leading environmental factor in the initiation of respiratory diseases and causes chronic obstructive pulmonary disease (COPD). Suppressor of cytokine signaling (SOCS) family members are involved in the pathogenesis of many inflammatory diseases and SOCS-3 has been shown to play an important role in the regulation, onset and maintenance of airway allergic inflammation indicating that SOCS-3 displays a potential therapeutic target for anti-inflammatory respiratory drugs development. Since chronic obstructive pulmonary disease (COPD) is also characterized by inflammatory changes and airflow limitation, the present study assessed the transcriptional expression of SOCS-3 in COPD.
Methods: Real-time PCR was performed to assess quantitative changes in bronchial biopsies of COPD patients in comparison to unaffected controls.
Results: SOCS-3 was significantly down-regulated in COPD at the transcriptional level while SOCS-4 and SOCS-5 displayed no change.
Conclusions: It can be concluded that the presently observed inhibition of SOCS-3 mRNA expression may be related to the dysbalance of cytokine signaling observed in COPD.
Clonal hematopoiesis of indeterminate potential (CHIP) is caused by recurrent somatic mutations leading to clonal blood cell expansion. However, direct evidence of the fitness of CHIP-mutated human hematopoietic stem cells (HSCs) in blood reconstitution is lacking. Because myeloablative treatment and transplantation enforce stress on HSCs, we followed 81 patients with solid tumors or lymphoid diseases undergoing autologous stem cell transplantation (ASCT) for the development of CHIP. We found a high incidence of CHIP (22%) after ASCT with a high mean variant allele frequency (VAF) of 10.7%. Most mutations were already present in the graft, albeit at lower VAFs, demonstrating a selective reconstitution advantage of mutated HSCs after ASCT. However, patients with CHIP mutations in DNA-damage response genes showed delayed neutrophil reconstitution. Thus, CHIP-mutated stem and progenitor cells largely gain on clone size upon ASCT-related blood reconstitution, leading to an increased future risk of CHIP-associated complications.
Kidney injury is a common complication of severe disease. Here, we report that injuries of the zebrafish embryonal kidney are rapidly repaired by a migratory response in 2-, but not in 1-day-old embryos. Gene expression profiles between these two developmental stages identify cxcl12a and myca as candidates involved in the repair process. Zebrafish embryos with cxcl12a, cxcr4b, or myca deficiency display repair abnormalities, confirming their role in response to injury. In mice with a kidney-specific knockout, Cxcl12 and Myc gene deletions suppress mitochondrial metabolism and glycolysis, and delay the recovery after ischemia/reperfusion injury. Probing these observations in zebrafish reveal that inhibition of glycolysis slows fast migrating cells and delays the repair after injury, but does not affect the slow cell movements during kidney development. Our findings demonstrate that Cxcl12 and Myc facilitate glycolysis to promote fast migratory responses during development and repair, and potentially also during tumor invasion and metastasis.
The multifunctional molecule netrin-1 is upregulated in various malignancies and has recently been presented as a major general player in tumorigenesis leading to tumor progression and maintenance in various animal models. However, there is still a lack of clinico-epidemiological data related to netrin-1 expression. Therefore, the aim of our study was to elucidate the association of netrin-1 expression and patient survival in brain metastases since those constitute one of the most limiting factors for patient prognosis. We investigated 104 brain metastases cases for netrin-1 expression using in-situ hybridization and immunohistochemistry with regard to clinical parameters such as patient survival and MRI data. Our data show that netrin-1 is strongly upregulated in most cancer subtypes. Univariate analyses revealed netrin-1 expression as a significant factor associated with poor patient survival in the total cohort of brain metastasis patients and in sub-entities such as non-small cell lung carcinomas. Interestingly, many cancer samples showed a strong nuclear netrin-1 signal which was recently linked to a truncated netrin-1 variant that enhances tumor growth. Nuclear netrin-1 expression was associated with poor patient survival in univariate as well as in multivariate analyses. Our data indicate both total and nuclear netrin-1 expression as prognostic factors in brain metastases patients in contrast to other prognostic markers in oncology such as patient age, number of brain metastases or Ki67 proliferation index. Therefore, nuclear netrin-1 expression constitutes one of the first reported molecular biomarkers for patient survival in brain metastases. Furthermore, netrin-1 may constitute a promising target for future anti-cancer treatment approaches in brain metastases.
Background: Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia. Methodology/Principal Findings: Thirty pigs (28–34 kg) were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21), coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38°C, hypothermia at 33°C or hypothermia at 33°C combined with sevoflurane (each group n = 7) for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01), reduced infarct size (34±7 versus 57±12%; p<0.05) and improved left ventricular function compared to normothermia (p<0.05). Hypothermia was associated with a reduction in: (i) immune cell infiltration, (ii) apoptosis, (iii) IL-1beta and IL-6 mRNA up-regulation, and (iv) IL-1beta protein expression (p<0.05). Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached. Conclusions/Significance: Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis and pro-inflammatory cytokine expression.
The cellular and molecular mechanisms of tumor angiogenesis and its prospects for anti-angiogenic cancer therapy are major issues in almost all current concepts of both cancer biology and targeted cancer therapy. Currently, (1) sprouting angiogenesis, (2) vascular co-option, (3) vascular intussusception, (4) vasculogenic mimicry, (5) bone marrow-derived vasculogenesis, (6) cancer stem-like cell-derived vasculogenesis and (7) myeloid cell-driven angiogenesis are all considered to contribute to tumor angiogenesis. Many of these processes have been described in developmental angiogenesis; however, the relative contribution and relevance of these in human brain cancer remain unclear. Preclinical tumor models support a role for sprouting angiogenesis, vascular co-option and myeloid cell-derived angiogenesis in glioma vascularization, whereas a role for the other four mechanisms remains controversial and rather enigmatic. The anti-angiogenesis drug Avastin (Bevacizumab), which targets VEGF, has become one of the most popular cancer drugs in the world. Anti-angiogenic therapy may lead to vascular normalization and as such facilitate conventional cytotoxic chemotherapy. However, preclinical and clinical studies suggest that anti-VEGF therapy using bevacizumab may also lead to a pro-migratory phenotype in therapy resistant glioblastomas and thus actively promote tumor invasion and recurrent tumor growth. This review focusses on (1) mechanisms of tumor angiogenesis in human malignant glioma that are of particular relevance for targeted therapy and (2) controversial issues in tumor angiogenesis such as cancer stem-like cell-derived vasculogenesis and bone-marrow-derived vasculogenesis.
Background: Panic disorder is common (5% prevalence) and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females.
Methodology/Principal Findings: Nineteen single nucleotide polymorphisms (SNPs) tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584). Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165) in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score.
Conclusions/Significance: The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder.
Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex.
Background: After induction of DNA double strand breaks (DSBs), the DNA damage response (DDR) is activated. One of the earliest events in DDR is the phosphorylation of serine 139 on the histone variant H2AX (gH2AX) catalyzed by phosphatidylinositol 3-kinases-related kinases. Despite being extensively studied, H2AX distribution[1] across the genome and gH2AX spreading around DSBs sites[2] in the context of different chromatin compaction states or transcription are yet to be fully elucidated.
Materials and methods: gH2AX was induced in human hepatocellular carcinoma cells (HepG2) by exposure to 10 Gy X-rays (250 kV, 16 mA). Samples were incubated 0.5, 3 or 24 hours post irradiation to investigate early, intermediate and late stages of DDR, respectively. Chromatin immunoprecipitation was performed to select H2AX, H3 and gH2AX-enriched chromatin fractions. Chromatin-associated DNA was then sequenced by Illumina ChIP-Seq platform. HepG2 gene expression and histone modification (H3K36me3, H3K9me3) ChIP-Seq profiles were retrieved from Gene Expression Omnibus (accession numbers GSE30240 and GSE26386, respectively).
Results: First, we combined G/C usage, gene content, gene expression or histone modification profiles (H3K36me3, H3K9me3) to define genomic compartments characterized by different chromatin compaction states or transcriptional activity. Next, we investigated H3, H2AX and gH2AX distributions in such defined compartments before and after exposure to ionizing radiation (IR) to study DNA repair kinetics during DDR. Our sequencing results indicate that H2AX distribution followed H3 occupancy and, thus, the nucleosome pattern. The highest H2AX and H3 enrichment was observed in transcriptionally active compartments (euchromatin) while the lowest was found in low G/C and gene-poor compartments (heterochromatin). Under physiological conditions, the body of highly and moderately transcribed genes was devoid of gH2AX, despite presenting high H2AX levels. gH2AX accumulation was observed in 5’ or 3’ flanking regions, instead. The same genes showed a prompt gH2AX accumulation during the early stage of DDR which then decreased over time as DDR proceeded.
Finally, during the late stage of DDR the residual gH2AX signal was entirely retained in heterochromatic compartments. At this stage, euchromatic compartments were completely devoid of gH2AX despite presenting high levels of non-phosphorylated H2AX.
Conclusions: We show that gH2AX distribution ultimately depends on H2AX occupancy, the latter following H3 occupancy and, thus, nucleosome pattern. Both H2AX and H3 levels were higher in actively transcribed compartments. However, gH2AX levels were remarkably low over the body of actively transcribed genes suggesting that transcription levels antagonize gH2AX spreading. Moreover, repair processes did not take place uniformly across the genome; rather, DNA repair was affected by genomic location and transcriptional activity. We propose that higher H2AX density in euchromaticcompartments results in high relative gH2AXconcentration soon after the activation of DDR, thus favoring the recruitment of the DNA repair machinery to those compartments. When the damage is repaired and gH2AX is removed, its residual fraction is retained in the heterochromatic compartments which are then targeted and repaired at later times.
Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti‐angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin‐2 (Ang‐2) as a potential target in both naive and bevacizumab‐treated glioblastoma. Ang‐2 expression was absent in normal human brain endothelium, while the highest Ang‐2 levels were observed in bevacizumab‐treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang‐2, whereas the combined inhibition of VEGF and Ang‐2 leads to extended survival, decreased vascular permeability, depletion of tumor‐associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206+ (M2‐like) macrophages were identified as potential novel targets following anti‐angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang‐2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang‐2 may potentially overcome resistance to bevacizumab therapy.