• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Balah, Amany (1)

Year of publication

  • 2009 (1)

Document Type

  • Doctoral Thesis (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Institute

  • Pharmazie (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Synergistic effects of IL-18 and double stranded RNA poly(I:C) in leukemic KG-1 cells (2009)
Balah, Amany
IL-18, a recently identified member of IL-1 family, is now recognized as an important regulator of innate and acquired immune responses. Therefore, the antitumor activities of IL-18 have been investigated. IL-18 has been shown to induce IFN-γ production by T, B, and NK cells, enhances NK cell activity, activates Fas ligandmediated apoptosis of the tumor cells, and improves the overall antitumor immunity. KG-1 cells were derived from a patient with acute myeloid leukemia (AML). IL-18 has been shown to induce IFN-γ production in those leukemic cells. TLR-3, in addition to its ability to recognize viral double stranded RNA, also can recognize the synthetic analogue poly(I:C) and induces type I IFN, inflammatory cytokine production, e.g TNF-α, and maturation of denderitic cells. In the present work the potential modulatory effect of PIC on IFN-γ and TNF-α production by KG-1 cells treated with IL-18 was investigated. Indeed, PIC strongly amplified the production of IFN-γ induced by IL-18 on mRNA and protein levels via NF-κB as well as p38 and JNK MAPK activation. Compared to IFN-γ, TNF-α showed different behaviour in KG-1 cells. On mRNA level I found only weak induction of TNF-α by IL-18 which was potentiated in the presence of PIC. Similarly, the release of TNF-α by IL-18 plus PIC required NF-κB as well as p38 and JNK MAPK activation. Furthermore, in the present work I found that TLR-3 is required for IFN-γ and TNF-α production. In addition, it is demonstrated by immunofluoresence that TLR-3 is localized in cytoplasm but not on the cell surface in KG-1 cells. Recently, it has been demonstrated that IFN-γ shows therapeutic potential as detected in AML blasts, specifically via inhibition of proliferation and induction of apoptosis. Thus our data could serve as a rationale for the clinical use of PIC and IL-18 in combination therapy. In search for new cytokines potentially modulated by the combination IL-18 plus PIC in KG-1 cells, cytokine antibody array analysis was performed. I found an upregulation of expected genes like IP-10 but most interestingly unexpected upregulation of PDGF-AA. Searching for detailed mechanisms of PDGF-AA induction, I found that neither p38 nor JNK is involved in PDGF-AA production but NF-κB is essential for the expression of PDGF-AA. Furthermore, I found that PDGF-AA is not able to increase the proliferation of KG-1 cells. PDGF and TGF-β are examples of signaling molecules which control the growth, survival, motility, and differentiation of cells. Therefore, the release of TGF-β by IL-18 plus PIC was monitored by ELISA. The level of TGF-β in cellular supernatants revealed that neither PIC nor IL-18 was able to significantly mediate release of TGF-β indicating that only PDGF-AA but not TGF-β is induced by PIC and IL-18 in KG-1 cells. To the best of our knowledge this is the first time that IL-18 or PIC is shown to induce the expression of PDGF-AA in KG-1 cells.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks