Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Podospora anserina (1)
- aging (1)
- i-AAA protease (1)
- mitochondria (1)
- protein quality control (1)
- temperature (1)
Institute
- Biowissenschaften (4)
- Medizin (1)
Mitochondrial maintenance crucially depends on the quality control of proteins by various chaperones, proteases and repair enzymes. While most of the involved components have been studied in some detail, little is known on the biological role of the CLPXP protease complex located in the mitochondrial matrix. Here we show that deletion of PaClpP, encoding the CLP protease proteolytic subunit CLPP, leads to an unexpected healthy phenotype and increased lifespan of the fungal ageing model organism Podospora anserina. This phenotype can be reverted by expression of human ClpP in the fungal deletion background, demonstrating functional conservation of human and fungal CLPP. Our results show that the biological role of eukaryotic CLP proteases can be studied in an experimentally accessible model organism.
The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring when cytochrome-c oxidase (COX) dependent respiration is affected. Several long-lived mutants are known which predominantly or exclusively respire via AOX. Here we show that two AOX-utilising mutants, grisea and PaCox17::ble, are able to compensate partially for lowered OXPHOS efficiency resulting from AOX-dependent respiration by increasing mitochondrial content. At the physiological level this is demonstrated by an elevated oxygen consumption and increased heat production. However, in the two mutants, ATP levels do not reach WT levels. Interestingly, mutant PaCox17::ble is characterized by a highly increased release of the reactive oxygen species (ROS) hydrogen peroxide. Both grisea and PaCox17::ble contain elevated levels of mitochondrial proteins involved in quality control, i. e. LON protease and the molecular chaperone HSP60. Taken together, our work demonstrates that AOX-dependent respiration in two mutants of the ageing model P. anserina is linked to a novel mechanism involved in the retrograde response pathway, mitochondrial biogenesis, which might also play an important role for cellular maintenance in other organisms.
Ziel dieser Arbeit war die Untersuchung der Rolle der i-AAA Protease in P. anserina, besonders während des Alterns des Ascomyceten. Die dazu durchgeführten Untersuchungen führten zu folgenden Ergebnissen:
1. Unter Standardbedingungen ist der PaIap-Deletionsstamm langlebiger als der Wildstamm, ohne feststellbare physiologische Beeinträchtigungen aufzuweisen. Dass dies auf den Verlust von PaIap zurückzuführen ist, bestätigen die PaIap-Revertantenstämme, in denen das Gen wieder eingeführt wurde, wodurch deren Lebensspanne wieder Wildtyp-artig ist. Dies zeigt, dass PaIAP zelluläre Prozesse beeinflusst, die die Lebensspanne kontrollieren.
2. Bei Hitzestress weist der PaIap-Deletionsstamm dagegen eine höhere Hitzesensitivität auf als der Wildstamm, was sich in einer verkürzten Lebensspanne und der Störung vitaler Funktionen äußert. Dies deutet auf eine mögliche Rolle von PaIAP bei der Hitzestressantwort hin.
3. Im Einklang mit dem hitzesensitiven Phänotyp des PaIap-Deletionsstamms konnte in mitochondrialen Extrakten des Wildtyps gezeigt werden, dass die Proteinmenge von PaIAP durch Hitzestress signifikant zunimmt. Gleichzeitig weisen mitochondriale Proteinextrakte von PaIap-Deletionsstämmen nach Hitzestress signifikant geringere Mengen an PaHSP60 und PaCLPP auf, zwei weiteren Komponenten der mitochondrialen Proteinqualitätskontrolle. Dies unterstreicht die Beteiligung von PaIAP an der Hitzestressantwort von P. anserina.
4. Darüber hinaus beeinflusst der Verlust von PaIap die Zusammensetzung der mitochondrialen Atmungskette und führt bei 27°C zu einer vermehrten Organisation der Komplexe in stabilere Superkomplexe. Dieser Mechanismus wird beim Wildstamm erst nach Hitzestress beobachtet, wogegen der PaIap-Deletionsstamm die Superkomplexmenge nicht mehr weiter steigern kann.
5. Die Genexpression von proteolytisch inaktiven Varianten von PaIAP (PaIAPE540Q bzw. PaIAPE540QG) kann den Phänotyp des PaIap-Deletionsstamms bei 27°C nicht komplementieren und führt ebenfalls zu einer Verlängerung der Lebensspanne von P. anserina. Dies liefert wichtige Informationen über den Mechanismus wie PaIAP die Lebensspanne von P. anserina beeinflusst, da dazu die proteolytische Aktivität von PaIAP benötigt wird.
6. Darüber hinaus zeigt die Analyse des PaIap/PaClpP-Deletionsstamms, dass sich die Mechanismen, wie PaIAP und PaCLPP die Lebensspanne von P. anserina beeinflussen, unterscheiden. Die unterschiedlichen zellulären Aufgaben werden auch bei Hitzestress deutlich, wovon der PaIap/PaClpP-Deletionsstamm noch stärker betroffen ist als durch die Deletion von PaIap bzw. PaClpP. Dies verdeutlicht, dass sich die Effekte der Deletionen der beiden Gene addieren.
Insgesamt konnte in dieser Arbeit gezeigt werden, dass die i-AAA Protease PaIAP auch bei P. anserina wichtige zelluläre Funktionen besitzt, die sich auf den Alterungsprozess des Ascomyceten auswirken. Dabei war es möglich verschiedene neue Mechanismen zu identifizieren, wie die i-AAA Protease diese Funktionen ausübt. Dazu gehören z.B. der Einfluss der proteolytischen Aktivität auf die Lebensspanne, die durch die Abwesenheit der i-AAA Protease ausgelöste Reorganisation der Atmungskettenkomplexe in stabile Superkomplexe, und die Induktion der Hitzestressantwort durch PaIAP. Diese Befunde tragen zum besseren Verständnis der zellulären Funktion der i-AAA Protease bei und stellen einen entscheidenden Ausgangspunkt für weiterführende Analysen der bislang wenig verstandenen Aufgaben der Protease dar.
Unmasking a temperature-dependent effect of the P. anserina i-AAA protease on aging and development
(2011)
Different molecular pathways involved in maintaining mitochondrial function are of fundamental importance to control cellular homeostasis. Mitochondrial i-AAA protease is part of such a surveillance system, and PaIAP is the putative ortholog in the fungal aging model Podospora anserina. Here, we investigate the role of PaIAP in aging and development. Deletion of the gene encoding PaIAP resulted in a specific phenotype. When incubated at 27°C, spore germination and fruiting body formation are not different from that of the corresponding wild-type strain. Unexpectedly, the lifespan of the deletion strain is strongly increased. In contrast, cultivation at an elevated temperature of 37°C leads to impairments in spore germination and fruiting body formation and to a reduced lifespan. The higher PaIAP abundance in wild-type strains of the fungus grown at elevated temperature and the phenotype of the deletion strain unmasks a temperature-related role of the protein. The protease appears to be part of a molecular system that has evolved to allow survival under changing temperatures, as they characteristically occur in nature.