Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- clumped isotopes (2)
- paleoaltimetry (2)
- Andes (1)
- Eocene (1)
- European Alps (1)
- GCM (1)
- Inter-Andean depression (1)
- Lobelioideae (1)
- Malawi Rift (1)
- Neotropics (1)
New geochemical data from the Malawi Rift (Chiwondo Beds, Karonga Basin) fill a major spatial gap in our knowledge of hominin adaptations on a continental scale. Oxygen (δ18O), carbon (δ13C), and clumped (Δ47) isotope data on paleosols, hominins, and selected fauna elucidate an unexpected diversity in the Pleistocene hominin diet in the various habitats of the East African Rift System (EARS). Food sources of early Homo and Paranthropus thriving in relatively cool and wet wooded savanna ecosystems along the western shore of paleolake Malawi contained a large fraction of C3 plant material. Complementary water consumption reconstructions suggest that ca. 2.4 Ma, early Homo (Homo rudolfensis) and Paranthropus (Paranthropus boisei) remained rather stationary near freshwater sources along the lake margins. Time-equivalent Paranthropus aethiopicus from the Eastern Rift further north in the EARS consumed a higher fraction of C4 resources, an adaptation that grew more pronounced with increasing openness of the savanna setting after 2 Ma, while Homo maintained a high versatility. However, southern African Paranthropus robustus had, similar to the Malawi Rift individuals, C3-dominated feeding strategies throughout the Early Pleistocene. Collectively, the stable isotope and faunal data presented here document that early Homo and Paranthropus were dietary opportunists and able to cope with a wide range of paleohabitats, which clearly demonstrates their high behavioral flexibility in the African Early Pleistocene.
Opportunities and challenges for paleoaltimetry in "small" orogens: insights from the European Alps
(2020)
Many stable isotope paleoaltimetry studies have focused on paleoelevation reconstructions of orogenic plateaus such as the Tibetan or Andean Plateaus. We address the opportunities and challenges of applying stable isotope paleoaltimetry to “smaller” orogens. We do this using a high‐resolution isotope tracking general circulation model (ECHAM5‐wiso) and explore the precipitation δ18O (δ18Op) signal of Cenozoic paleoclimate and topographic change in the European Alps. Results predict a maximum δ18Op change of 4–5‰ (relative to present day) during topographic development of the Alps. This signal of topographic change has the same magnitude as changes in δ18Op values resulting from Pliocene and Last Glacial Maximum global climatic change. Despite the similar magnitude of the isotopic signals resulting from topographic and paleoclimate changes, their spatial patterns across central Europe differ. Our results suggest that an integration of paleoclimate modeling, multiproxy approaches, and low‐elevation reference proxy records distal from an orogen improve topographic reconstructions.
The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae)
(2016)
The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity.
The Paleocene-Eocene Thermal Maximum (PETM) offers insight into massive short-term carbon cycle perturbations that caused significant warming during a high-pCO2 world, affecting both marine and terrestrial ecosystems. PETM records from the marine-terrestrial interface (e.g. estuarine swamps and mire deposits) are, therefore, of great interest as their present-day counterparts are highly vulnerable to future climate and sea level change. Here, we assess paleoenvironmental changes of mid-latitudinal Late Paleocene-Early Eocene peat mire records along the paleo-North Sea coast. We provide carbon isotope data of bulk organic matter (δ13CTOC), organic carbon content (%TOC), and palynological data from an extensive peat mire deposited at a mid-latitudinal (ca. 41 °N) coastal site (Schöningen, Germany). The δ13CTOC data show a carbon isotope excursion (CIE) of −1.7 ‰ coeval with a conspicuous Apectodinium acme, calling for the presence of the PETM in this coastal section. Due to the exceptionally large stratigraphic thickness of the PETM at Schöningen (10 m of section) we established a detailed palynological record that indicates only minor changes in paleovegetation leading to and during the PETM. Instead, paleovegetation changes mostly follow natural successions in response to changes along the marine-terrestrial interface. Compared to other available peat mire records (Cobham, UK; Vasterival, France) it appears that wetland deposits around the Paleogene North Sea have a typical CIE magnitude of ca. −1.3 ‰ in δ13CTOC. Moreover, the Schöningen record shares major characteristics with the Cobham Lignite, including evidence for increased fire activity prior to the PETM, minor PETM-related plant species changes, a reduced CIE in δ13CTOC, and drowning of the mire (marine ingressions) during much of the PETM. This suggests that paleoenvironmental conditions during the Late Paleocene-Early Eocene, including the PETM, consistently affected major segments of the paleo-North Sea coast.
Triple oxygen isotope measurements are an emerging tool in paleoclimate reconstructions. In this contribution we develop the application of triple oxygen isotope measurements to lacustrine sediments to reconstruct past elevations. We focus on a well-constrained sample set from the Eocene North American Cordillera (Cherty Limestone Formation, Elko Basin, NV, United States, 42–43.5 Ma) on the east side of the elevated Nevadaplano. We present triple oxygen isotope measurements on freshwater lacustrine chert samples from the Cherty Limestone Formation. Across an evaporation trend spanning 6.5‰ in δ18O values we observe a negative correlation with Δ′17O ranging from −0.066 to −0.111‰ (λRL = 0.528), with an empirical slope (λchert, δ′17O vs. δ′18O) of 0.5236. Additionally, we present new carbonate clumped isotope (Δ47) temperature results on the overlying fluvial-lacustrine Elko Formation, which indicate an error-weighted mean temperature of 32.5 ± 3.8°C (1σ), and evaporatively enriched lake water spanning δ18O values of −3.7 to +3.5‰ (VSMOW). Paired chert and carbonate δ18O values demonstrate that co-equilbrium among the carbonate and chert phases is unlikely. Thus, as also previously suggested, it is most likely that Elko Basin chert formed during early diagenesis in equilbirium with pore waters that reflect evaporatively 18O-enriched lake water. Using this scenario we apply a model for back-calculating unevaporated water composition to derive a source water of δ′18O = −16.1‰ (VSMOW), similar to modern local meteoric waters but lower than previous work on paired δ18O- δD measurements from the same chert samples. Further, this back-calculated unevaporated source water is higher than those derived using δD measurements of Late Eocene hydrated volcanic glass from the Elko Basin (average δ′18O equivalent of approximately −18.4‰, VSMOW). This suggests, assuming Eocene meteoric water Δ′17O values similar to today (∼0.032‰), either that: (1) the hypsometric mean elevation recorded by the lacustrine Cherty Limestone was lower than that derived from the average of the volcanic glass δD measurements alone; or (2) there was hydrogen exchange in volcanic glass with later low δD meteoric fluids. Nonetheless, our new findings support a relatively high (∼2.5–3 km) plateau recorded in the Elko Basin during the mid-Eocene.
Determining how the elevation of the Northern Andes has evolved over time is of paramount importance for understanding the response of the Northern Andes to deformational and geodynamic processes and its role as an orographic barrier for atmospheric vapor transport over geologic time. However, a fundamental requirement when using stable isotope data for paleoaltimetry reconstructions is knowledge about the present-day changes of δ18O and δD with elevation (isotopic lapse rate). This study defines the present-day river isotopic lapse rate near the Equator (∼3°S) based on analysis of δ18O and δD of surface waters collected from streams across the Western Cordillera and the Inter-Andean depression in Southern Ecuador. The results for the two domains show a decrease of δ18O with elevation which fits a linear regression with a slope of −0.18‰/100 m (R2 = 0.73, n = 83). However, we establish a present-day lapse rate of −0.15‰/100 m for δ18O (R2 = 0.88, n = 19) and -1.4‰/100 m for δD (R2 = 0.93, n = 19) from water samples collected along the west facing slopes of the Western Ecuadorian Cordillera which is mainly subject to moisture transport from the Pacific. We argue that this empirical relationship, consistent with those obtained in different tropical areas of the world, can inform stable isotope paleoaltimetry reconstructions in tropical latitudes.