Refine
Document Type
- Article (12)
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- sepsis (3)
- inflammation (2)
- reactive oxygen species (2)
- HDAC (1)
- Nrf2 (1)
- PD-L1 (1)
- S1PR1 (1)
- angiogenesis (1)
- antioxidant defense (1)
- antioxidants (1)
Tolerizing CTL by sustained hepatic PD-L1 expression provides a new therapy spproach in mouse sepsis
(2019)
Cytotoxic T lymphocyte (CTL) activation contributes to liver damage during sepsis, but the mechanisms involved are largely unknown. Understanding the underlying principle will permit interference with CTL activation and thus, provide a new therapeutic option.
Methods: To elucidate the mechanism leading to CTL activation we used the Hepa1-6 cell line in vitro and the mouse model of in vivo polymicrobial sepsis, following cecal-ligation and -puncture (CLP) in wildtype, myeloid specific NOX-2, global NOX2 and NOX4 knockout mice, and their survival as a final readout. In this in vivo setting, we also determined hepatic mRNA and protein expression as well as clinical parameters of liver damage - aspartate- and alanine amino-transaminases. Hepatocyte specific overexpression of PD-L1 was achieved in vivo by adenoviral infection and transposon-based gene transfer using hydrodynamic injection.
Results: We observed downregulation of PD-L1 on hepatocytes in the murine sepsis model. Adenoviral and transposon-based gene transfer to restore PD-L1 expression, significantly improved survival and reduced the release of liver damage, as PD-L1 is a co-receptor that negatively regulates T cell function. Similar protection was observed during pharmacological intervention using recombinant PD-L1-Fc. N-acetylcysteine blocked the downregulation of PD-L1 suggesting the involvement of reactive oxygen species. This was confirmed in vivo, as we observed significant upregulation of PD-L1 expression in NOX4 knockout mice, following sham operation, whereas its expression in global as well as myeloid lineage NOX2 knockout mice was comparable to that in the wild type animals. PD-L1 expression remained high following CLP only in total NOX2 knockouts, resulting in significantly reduced release of liver damage markers.
Conclusion: These results suggest that, contrary to common assumption, maintaining PD-L1 expression on hepatocytes improves liver damage and survival of mice during sepsis. We conclude that administering recombinant PD-L1 or inhibiting NOX2 activity might offer a new therapeutic option in sepsis.
Prostaglandin E2 (PGE2) favors multiple aspects of tumor development and immune evasion. Therefore, microsomal prostaglandin E synthase (mPGES-1/-2), is a potential target for cancer therapy. We explored whether inhibiting mPGES-1 in human and mouse models of breast cancer affects tumor-associated immunity. A new model of breast tumor spheroid killing by human PBMCs was developed. In this model, tumor killing required CD80 expression by tumor-associated phagocytes to trigger cytotoxic T cell activation. Pharmacological mPGES-1 inhibition increased CD80 expression, whereas addition of PGE2, a prostaglandin E2 receptor 2 (EP2) agonist, or activation of signaling downstream of EP2 reduced CD80 expression. Genetic ablation of mPGES-1 resulted in markedly reduced tumor growth in PyMT mice. Macrophages of mPGES-1-/- PyMT mice indeed expressed elevated levels of CD80 compared to their wildtype counterparts. CD80 expression in tumor-spheroid infiltrating mPGES-1-/- macrophages translated into antigen-specific cytotoxic T cell activation. In conclusion, mPGES-1 inhibition elevates CD80 expression by tumor-associated phagocytes to restrict tumor growth. We propose that mPGES-1 inhibition in combination with immune cell activation might be part of a therapeutic strategy to overcome the immunosuppressive tumor microenvironment.
Macrophage S1PR1 signaling alters angiogenesis and lymphangiogenesis during skin inflammation
(2019)
The bioactive lipid sphingosine-1-phosphate (S1P), along with its receptors, modulates lymphocyte trafficking and immune responses to regulate skin inflammation. Macrophages are important in the pathogenesis of psoriasiform skin inflammation and express various S1P receptors. How they respond to S1P in skin inflammation remains unknown. We show that myeloid specific S1P receptor 1 (S1PR1) deletion enhances early inflammation in a mouse model of imiquimod-induced psoriasis, without altering the immune cell infiltrate. Mechanistically, myeloid S1PR1 deletion altered the formation of IL-1β, VEGF-A, and VEGF-C, and their receptors’ expression in psoriatic skin, which subsequently lead to reciprocal regulation of neoangiogenesis and neolymphangiogenesis. Experimental findings were corroborated in human clinical datasets and in knockout macrophages in vitro. Increased blood vessel but reduced lymph vessel density may explain the exacerbated inflammatory phenotype in conditional knockout mice. These findings assign a novel role to macrophage S1PR1 and provide a rationale for therapeutically targeting local S1P during skin inflammation.
Introduction: Immune paralysis with massive T-cell apoptosis is a central pathogenic event during sepsis and correlates with septic patient mortality. Previous observations implied a crucial role of peroxisome proliferator-activated receptor gamma (PPARγ) during T-cell apoptosis.
Methods: To elucidate mechanisms of PPARγ-induced T-cell depletion, we used an endotoxin model as well as the caecal ligation and puncture sepsis model to imitate septic conditions in wild-type versus conditional PPARγ knockout (KO) mice.
Results: PPARγ KO mice showed a marked survival advantage compared with control mice. Their T cells were substantially protected against sepsis-induced death and showed a significantly higher expression of the pro-survival factor IL-2. Since PPARγ is described to repress nuclear factor of activated T cells (NFAT) transactivation and concomitant IL-2 expression, we propose inhibition of NFAT as the underlying mechanism allowing T-cell apoptosis. Corroborating our hypothesis, we observed up-regulation of the pro-apoptotic protein BIM and downregulation of the anti-apoptotic protein Bcl-2 in control mice, which are downstream effector proteins of IL-2 receptor signaling. Application of a neutralizing anti-IL-2 antibody reversed the pro-survival effect of PPARγ-deficient T cells and confirmed IL-2-dependent apoptosis during sepsis.
Conclusion: Apparently antagonizing PPARγ in T cells might improve their survival during sepsis, which concomitantly enhances defence mechanisms and possibly provokes an increased survival of septic patients.
Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2). Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.
CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene.
Background: The ligand-activated transcription factor, peroxisome-proliferator-activated receptor gamma (PPARγ), has been shown to play an essential role in immunosuppression during sepsis. PPARγ is upregulated in T cells of septic patients, sensitizing these cells to PPARγ-dependent apoptosis and thus contributing to T-cell depletion. In the polymicrobial cecum ligation and puncture (CLP) sepsis model in mice, both T-cell-specific gene knockout (Lck-Cre PPARγfl/fl) and systemic pharmacological PPARγ antagonism by GW9662 improved survival. Because GW9662 was only effective when applied 3 hours after CLP, we were interested to extend this time frame. For this reason we characterized the kinetics of SPPARγMs when administered before or in combination with the agonist thiazolidinedione, rosiglitazone.
Methods: A PPARγ-dependent transactivation assay was used in HEK293T cells. It is based on the vector pFA-PPARγ-LBD-GAL4-DBD encoding the hybrid protein PPARγ-LBD-GAL4-DBD and the reporter vector pFR-Luc, carrying a GAL4-responsive element in front of the Firefly luciferase gene. These two vectors were co-transfected, in combination with a control vector encoding Renilla luciferase (pRL-CMV) to normalize Firefly luciferase activity for transfection efficiency. Following transfection, cells were incubated with the SPPARγMs F-MOC and MCC-555 and the PPARγ antagonist GW9662 for different times (2 to 48 hours) and at increasing doses (0.01 to 10 μM), with or without rosiglitazone (0.01 to 10 μM). Transactivation was analyzed using a 96-well plate format.
Results: Rosiglitazone transactivated PPARγ in a time-dependent and dose-dependent manner, the response gradually increasing to a maximum at 48 hours with 10 μM. Low concentrations (0.01 to 0.1 μM) of SPPARγMs F-MOC and MCC-555 and the PPARγ antagonist GW9662 all exerted dose-independent antagonistic effects at an early incubation time point (2 hours). From 10 hours onwards, MCC-555 and GW9662, given alone, both exerted PPARγ agonistic effects, MCC-555 in parallel to responses to rosiglitazone, but GW9662 with characteristics of partial antagonism. F-MOC showed no dose-dependent effect at any concentration at later time points. Only GW9662 (1 to 10 μM) was able to inhibit rosiglitazone (0.1 to 1 μM)-induced PPARγ transactivation after 10 hours.
Conclusion: Our kinetic analysis reveals clear differences in the modulatory characteristics of PPARγ inhibitors, with previously unreported early inhibitory effects and late agonistic or partial agonistic activity. New SPPARγMs with extended inhibitory activity may prove useful in the therapy of sepsis.
Background: In macrophages Toll-like receptor 4 (TLR4) is activated in response to lipopolysaccharide (LPS) and induces proinflammatory cytokine expression. Therefore, mechanisms terminating proinflammatory gene expression are important. Autophagy plays a central role in controlling innate immune responses by lysosomal degradation of signaling proteins, thus contributing to the resolution of inflammation. Autophagic proteins like p62 directly interact with molecules involved in the TLR4-signaling pathway, but a correlation with the IRAK E3 ligase and scaffold protein Pellino3 remains obscure. Hence, we are interested in elucidating the function of Pellino3 to prove our hypothesis that it is a key regulator in the TLR4-signaling cascade.
Methods: We used the cecal ligation and puncture (CLP) mouse model causing polymicrobial sepsis to analyze Pellino3 protein and mRNA expression. Furthermore, we induced endotoxemia in RAW264.7 mouse macrophages by LPS treatment to verify in vivo experiments. Lentiviral Pellino3 knockdown in RAW264.7 macrophages was used for cytokine measurements at mRNA level. To analyze potential Pellino3 binding partners in TLR4-signaling by mass spectrometry (MS), we overexpressed FLAG-tagged Pellino3 in RAW264.7 macrophages, treated cells for 3, 6 and 24 hours with LPS and immunoprecipitated Pellino3 via its FLAG-tag. To consider Pellino3 degradation as a result of p62-mediated autophagy, we transiently knocked down p62 by siRNA in RAW264.7 macrophages and also pharmacologically blocked LPS-induced autophagy by Bafilomycin A1.
Results: We demonstrated Pellino3 protein degradation in primary CD11b+ splenocytes after 24 hours following CLP operation and confirmed this in RAW264.7 macrophages after 24-hour LPS stimulation. Knockdown of Pellino3 attenuates proinflammatory cytokines, for example IL-6 mRNA, after 6 hours of LPS. Furthermore, we found by MS and verifying immunoprecipitation experiments that p62 is a Pellino3 binding partner, thus targeting Pellino3 for degradation. In line, both p62 knockdown and Bafilomycin A1 treatment prevent Pellino3 degradation, supporting an autophagic mechanism.
Conclusion: Our observations highlight a regulatory role of Pellino3 on TLR4 signaling. Thus, antagonism of Pellino3 in the hyperinflammatory phase of sepsis may counteract the cytokine storm. Furthermore, stabilization of Pellino3 by inhibition of autophagy in the hypoinflammatory phase of sepsis may improve immunity. In consideration of these two conflictive sepsis phases, modulation of Pellino3 may provide a new strategy for the development of a therapy approach in sepsis.
Attenuated NOX2 expression impairs ROS production during the hypoinflammatory phase of sepsis
(2012)
Background: The multicomponent phagocytic NADPH oxidase produces reactive oxygen species (ROS) after activation by microorganisms or inflammatory mediators. In the hypoinflammatory phase of sepsis, macrophages are alternatively activated by contact with apoptotic cells or their secretion products. This inhibits NADPH oxidase and leads to attenuated ROS production and furthermore contributes among others to a hyporeactive host defense. Due to this immune paralysis, sepsis patients suffer from recurrent and secondary infections. We focused on the catalytic subunit of NADPH oxidase, the transmembrane protein NOX2. We assume that after induction of sepsis the expression of NOX2 is reduced and hence ROS production is decreased.
Methods: We induced polymicrobial sepsis in mice by cecal ligation and puncture. The ability of peritoneal macrophages (PMs) to produce ROS was determined by FACS via hydroethidine assay. NOX2 expression of PMs was determined by western blot and qPCR. To elucidate the mechanism causing mRNA destabilization, we performed in vitro experiments using J774 macrophages. To obtain an alternatively activated phenotype, macrophages were stimulated with conditioned medium from apoptotic T cells (CM). By luciferase assays we figured out a 3'UTR-dependent regulation of NOX2 mRNA stability. Assuming that a protein is involved in the mRNA degradation, we performed a RNA pulldown with biotinylated NOX2-3'UTR constructs followed by mass spectrometry. We verified the role of SYNCRIP by siRNA approach. Additionally, we overexpressed NOX2 in J774 cells and analyzed the ROS production (w/wo CM treatment) by FACS.
Results: We found an impaired expression of NOX2 at RNA and protein level along with decreased ROS production after induction of sepsis in mice as well as stimulating J774 macrophages with CM of apoptotic T cells. This is due to a time-dependent NOX2 mRNA degradation depending on SYNCRIP, a RNA-binding protein, which stabilizes NOX2 mRNA through binding to its 3'UTR under normal conditions. In line, knockdown of SYNCRIP also decreases NOX2 mRNA expression. We assume that a CM-dependent modification or degradation of SYNCRIP prevents its stabilizing function. As the overexpression of NOX2 restores ROS production of CM-treated J774 cells, we assume that NOX2 expression is crucial for maintaining NADPH activity during the hypoinflammatory phase of sepsis.
Conclusion: Our data imply a regulatory impact of SYNCRIP on NOX2 stability during the late phase of sepsis. Therefore, further understanding of the regulation of NADPH oxidase could lead to the design of a therapy to reconstitute NADPH oxidase function, finally improving immune function in sepsis patients.
Sepsis is characterized by dysregulated gene expression, provoking a hyper-inflammatory response occurring in parallel to a hypo-inflammatory reaction. This is often associated with multi-organ failure, leading to the patient’s death. Therefore, reprogramming of these pro- and anti-inflammatory, as well as immune-response genes which are involved in acute systemic inflammation, is a therapy approach to prevent organ failure and to improve sepsis outcomes. Considering epigenetic, i.e., reversible, modifications of chromatin, not altering the DNA sequence as one tool to adapt the expression profile, inhibition of factors mediating these changes is important. Acetylation of histones by histone acetyltransferases (HATs) and initiating an open-chromatin structure leading to its active transcription is counteracted by histone deacetylases (HDACs). Histone deacetylation triggers a compact nucleosome structure preventing active transcription. Hence, inhibiting the activity of HDACs by specific inhibitors can be used to restore the expression profile of the cells. It can be assumed that HDAC inhibitors will reduce the expression of pro-, as well as anti-inflammatory mediators, which blocks sepsis progression. However, decreased cytokine expression might also be unfavorable, because it can be associated with decreased bacterial clearance.