Refine
Document Type
- Article (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- hypoxia (2)
- 2-deoxyglucose (2-DG) (1)
- MRI (1)
- Warburg effect (1)
- glioblastoma (1)
- glioma (1)
- glycolysis (1)
- isocaloric ketogenic diet (1)
- metabolic cancer therapy (1)
- metabolism (1)
Institute
- Medizin (3)
Cancer metabolism is characterized by extensive glucose consumption through aerobic glycolysis. No effective therapy exploiting this cancer trait has emerged so far, in part, due to the substantial side effects of the investigated drugs. In this study, we examined the side effects of a combination of isocaloric ketogenic diet (KD) with the glycolysis inhibitor 2-deoxyglucose (2-DG). Two groups of eight athymic nude mice were either fed a standard diet (SD) or a caloric unrestricted KD with a ratio of 4 g fat to 1 g protein/carbohydrate. 2-DG was investigated in commonly employed doses of 0.5 to 4 g/kg and up to 8 g/kg. Ketosis was achieved under KD (ketone bodies: SD 0.5 ± 0.14 mmol/L, KD 1.38 ± 0.28 mmol/L, p < 0.01). The intraperitoneal application of 4 g/kg of 2-DG caused a significant increase in blood glucose, which was not prevented by KD. Sedation after the 2-DG treatment was observed and a behavioral test of spontaneous motion showed that KD reduced the sedation by 2-DG (p < 0.001). A 2-DG dose escalation to 8 g/kg was lethal for 50% of the mice in the SD and for 0% of the mice in the KD group (p < 0.01). A long-term combination of KD and an oral 1 or 2 g 2-DG/kg was well-tolerated. In conclusion, KD reduces the sedative effects of 2-DG and dramatically increases the maximum tolerated dose of 2-DG. A continued combination of KD and anti-glycolytic therapy is feasible. This is, to our knowledge, the first demonstration of increased tolerance to glycolysis inhibition by KD.
Background: Hypoxia is a key driver for infiltrative growth in experimental gliomas. It has remained elusive whether tumor hypoxia in glioblastoma patients contributes to distant or diffuse recurrences. We therefore investigated the influence of perioperative cerebral ischemia on patterns of progression in glioblastoma patients.
Methods: We retrospectively screened MRI scans of 245 patients with newly diagnosed glioblastoma undergoing resection for perioperative ischemia near the resection cavity. 46 showed relevant ischemia nearby the resection cavity. A control cohort without perioperative ischemia was generated by a 1:1 matching using an algorithm based on gender, age and adjuvant treatment. Both cohorts were analyzed for patterns of progression by a blinded neuroradiologist.
Results: The percentage of diffuse or distant recurrences at first relapse was significantly higher in the cohort with perioperative ischemia (61.1%) compared to the control cohort (19.4%). The results of the control cohort matched well with historical data. The change in patterns of progression was not associated with a difference in survival.
Conclusions: This study reveals an unrecognized association of perioperative cerebral ischemia with distant or diffuse recurrence in glioblastoma. It is the first clinical study supporting the concept that hypoxia is a key driver of infiltrative tumor growth in glioblastoma patients.
Im Rahmen des BIOKLIM-Projekts wurden im Nationalpark Bayerischer Wald Daten zu verschiedenen Tier- und Pflanzenarten sowie Umweltfaktoren erhoben. Die folgende Auswertung beschränkt sich auf die Weichtiere (Gastropoda, Bivalvia). Ziel war es, herauszufinden, welche Umweltfaktoren die Arten- und Individuenanzahlen beeinflussen, was die Lebensgemeinschaften steuert und welche Parameter sich auf ausgewählte Einzelarten auswirken. In Quasi-Poisson-Modellen haben sich als Einflussgrößen für die Individuenanzahl Höhe, Alter, Magnesium und pH-Wert feststellen lassen. Auf die Artenanzahl wirkte sich der Vegetationsreichtum, die Höhe und der Managementtyp aus. Die Einzelarten werden von sehr unterschiedlichen Faktoren beeinflusst. Die Lebensgemeinschaften werden vor allem von der Höhe über dem Meeresspiegel, der Temperatur und dem Auflichtungsgrad bestimmt, was sich in verschiedenen Ordinationsverfahren gezeigt hat.
In several tumor entities, transketolase-like protein 1 (TKTL1) has been suggested to promote the nonoxidative part of the pentose phosphate pathway (PPP) and thereby to contribute to a malignant phenotype. However, its role in glioma biology has only been sparsely documented. In the present in vitro study using LNT-229 glioma cells, we analyzed the impact of TKTL1 gene suppression on basic metabolic parameters and on survival following oxygen restriction and ionizing radiation. TKTL1 was induced by hypoxia and by hypoxia-inducible factor-1α (HIF-1α). Knockdown of TKTL1 via shRNA increased the cells’ demand for glucose, decreased flux through the PPP and promoted cell death under hypoxic conditions. Following irradiation, suppression of TKTL1 expression resulted in elevated levels of reactive oxygen species (ROS) and reduced clonogenic survival. In summary, our results indicate a role of TKTL1 in the adaptation of tumor cells to oxygen deprivation and in the acquisition of radioresistance. Further studies are necessary to examine whether strategies that antagonize TKTL1 function will be able to restore the sensitivity of glioma cells towards irradiation and antiangiogenic therapies in the more complex in vivo environment.