Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- axions (1)
- dark matter experiments (1)
- solar physics (1)
- white and brown dwarfs (1)
Institute
- Physik (4)
We present the measured correlation functions for pi+ pi-, pi- pi- and pi+ pi+ pairs in central S+Ag collisions at 200 GeV per nucleon. The Gamov function, which has been traditionally used to correct the correlation functions of charged pions for the Coulomb interaction, is found to be inconsistent with all measured correlation functions. Certain problems which have been dominating the systematic uncertainty of the correlation analysis are related to this inconsistency. It is demonstrated that a new Coulomb correction method, based exclusively on the measured correlation function for pi+ pi- pairs, may solve the problem.
The transverse momentum and rapidity distributions of negative hadrons and participant protons have been measured for central 32S+ 32S collisions at plab=200 GeV/c per nucleon. The proton mean rapidity shift < Delta y>~1.6 and mean transverse momentum <pT>~0.6 GeV/c are much higher than in pp or peripheral AA collisions and indicate an increase in the nuclear stopping power. All pT spectra exhibit similar source temperatures. Including previous results for K0s Lambda , and Lambda -bar, we account for all important contributions to particle production.
The NA35 experiment has collected a high statistics set of momentum analyzed negative hadrons near and forward of midrapidity for central collisions of 200A GeV/c 32S+S, Cu, Ag, and Au. Using momentum space correlations to study the size of the source of particle production, the transverse source radii are found to decrease by ~40% at midrapidity and ~20% at forward rapidity while the longitudinal radius RL is found to decrease by ~50% as pT increases over the interval 50<pT<600 MeV/c. Calculations using a microscopic phase space approach (relativistic quantum molecular dynamics) reproduce the observed trends of the data. PACS: 25.75.+r
In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axiorecombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength ga using the CAST phase-I data (vacuum phase). For ma <~ 10 meV/c2 we find ga gae < 8.1 × 10−23 GeV−1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.