Refine
Year of publication
- 2015 (2)
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Biowissenschaften (1)
- Medizin (1)
The flow-responsive transcription factor Krüppel-like factor 2 (KLF2) maintains an anti-coagulant, anti-inflammatory endothelium with sufficient nitric oxide (NO)-bioavailability. In this study, we aimed to explore, both in vitro and in human vascular tissue, expression of the NO-transporting transmembrane pore aquaporin-1 (AQP1) and its regulation by atheroprotective KLF2 and atherogenic inflammatory stimuli. In silico analysis of gene expression profiles from studies that assessed the effects of KLF2 overexpression in vitro and atherosclerosis in vivo on endothelial cells, identifies AQP1 as KLF2 downstream gene with elevated expression in the plaque-free vessel wall. Biomechanical and pharmaceutical induction of KLF2 in vitro is accompanied by induction of AQP1. Chromosome immunoprecipitation (CHIP) confirms binding of KLF2 to the AQP1 promoter. Inflammatory stimulation of endothelial cells leads to repression of AQP1 transcription, which is restrained by KLF2 overexpression. Immunohistochemistry reveals expression of aquaporin-1 in non-activated endothelium overlying macrophage-poor intimae, irrespective whether these intimae are characterized as being plaque-free or as containing advanced plaque. We conclude that AQP1 expression is subject to KLF2-mediated positive regulation by atheroprotective shear stress and is downregulated under inflammatory conditions both in vitro and in vivo. Thus, endothelial expression of AQP1 characterizes the atheroprotected, non-inflamed vessel wall. Our data provide support for a continuous role of KLF2 in stabilizing the vessel wall via co-temporal expression of eNOS and AQP1 both preceding and during the pathogenesis of atherosclerosis.
Flow hemodynamics regulates endothelial cell (EC) responses and laminar shear stress induces an atheroprotective and quiescent phenotype. The flow-responsive transcription factor KLF2 is a pivotal mediator of endothelial quiescence, but the precise mechanism is unclear. In this doctoral study, we assessed the hypothesis that laminar shear stress and KLF2 regulate endothelial quiescence by controlling endothelial metabolism.
Laminar flow exposure and KLF2 over expression in HUVECs reduced glucose uptake. Endothelial specific deletion of KLF2 (EC-KO) in mice and subsequent infusion of labeled glucose in Langendorff perfused hearts induced glucose uptake in ECs lacking KLF2. Bioenergetic measurements revealed that KLF2 reduces and glycolytic acidification in vitro.
Mechanistically, RNA sequencing analysis of shear stimulated ECs showed reduced expression of key glycolytic enzymes Hexokinase 2, PFKFB3 and PFK-1. KLF2 also reduced expression of these enzymes at protein level. KLF2 knockdown in shear stimulated ECs reversed the reduction in expression of PFKFB3 and PFK-1, indicating KLF2-dependency. Promoter analysis revealed KLF binding sites in the promoter of PFKFB3 and KLF2 over expression markedly reduced PFKFB3 promoter activity which was abolished on mutation of the KLF binding site. In addition, PFKFB3 knockdown reduced glycolysis while over expression increased glycolysis. Over expression of PFKFB3 along with KLF2 partially reversed the KLF2-mediated reduction in glycolysis. Importantly, PFKFB3 over expression reversed KLF2-mediated reduction in angiogenic sprouting and network formation in vitro. Ex-vivo aortic ring assays revealed an increase in endothelial sprouting from aortas from KLF2 EC-KO mice, which was partially reversed upon PFKFB3 inhibition by 3-PO.
In conclusion, work performed during this doctoral thesis demonstrates that laminar shear stress and KLF2 mediated repression of endothelial metabolism via regulation of PFKFB3 contributes to the anti-angiogenic and quiescent properties of the endothelium.