Refine
Year of publication
- 2004 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
Safety concerns associated with the use of viral vectors in gene therapy applications have attracted considerable attention towards the development of nonviral vectors as alternatives for DNA delivery. While nonviral vectors are commonly not associated with safety problems, they are still very inefficient compared to viral vectors, and require significant improvements to approach the efficiency of their viral counterparts. Meanwhile ligands or single-chain antibody fragments that bind to cell surface receptors for increased and/or specific cellular uptake, endosome escape activities, and nuclear localization sequences (NLSs) to enhance transport of plasmid DNA into the nucleus, have become available that can be incorporated into nonviral vectors to improve their efficacy. However, as gene delivery is a multistep process, the challenge is to incorporate multiple of these functional elements into a single nonviral vector system, while retaining their specific activities. A promising method to attach such entities to plasmid DNA is the use of multifunctional fusion proteins that bind to DNA through a DNA-binding domain. In principle, two types of DNA-binding domains/proteins can be used to anchor additional functional domains or peptides to a plasmid, namely sequence-specific DNA-binding domains, described in the first part of this thesis, or those that bind DNA independent of its sequence, exemplified in the second part of this work by a derivative of the human HMGB2 protein. The first fusion protein constructed and analyzed contained the E. coli LexA repressor as a sequence-specific DNA-binding domain. In addition, this DNA-carrier protein, termed TEL, included a bacterial translocation domain as an integrated endosome escape activity, and human TGF-a for specific targeting to the EGF-receptor (EGFR). TEL was expressed in E. coli and purified under both native and denaturing conditions. Purified, denatured TEL was refolded and subsequently shown to bind specifically to EGFR-expressing cells. However, inclusion of TEL in complexes of plasmid DNA and poly-L-lysine (pL) did not lead to increased gene delivery into EGFR-expressing COS-1 cells. Most likely this was due to the absence of DNA-binding activity of the LexA moiety in TEL. In contrast, native TEL was able to interact specifically with DNA. Nevertheless, since this interaction was rather weak, and refolding of denatured TEL had not resulted in functional activity of all of its protein domains, it seemed unlikely that fusion proteins containing LexA would exhibit gene transfer capabilities superior to those of similar DNA-carrier proteins previously constructed in our group. Further work therefore focused on the use of the E2C-Sp1C protein as an alternative sequencespecific DNA-binding domain. This artificial zinc-finger protein was fused to the single-chain antibody fragment scFv(FRP5), directed against the human ErbB2 growth factor receptor. The resulting 5-E2C fusion protein was expressed in E. coli and purified under native and denaturing conditions. Refolded and native 5-E2C were found to bind specifically to ErbB2-expressing cells, indicating that scFv(FRP5) in 5-E2C was functional in both preparations. In contrast, whereas refolded 5-E2C bound DNA only weakly, significant DNA binding was observed for native 5-E2C. In addition, it could not only be shown that the interaction of native 5-E2C with DNA containing its recognition sequence was specific, but also that this protein was able to bind DNA and recombinant ErbB2 simultaneously, demonstrating the functionality of both domains in native 5-E2C. Despite these encouraging results, the inclusion of native 5-E2C in pL- or polyethyleneimine (PEI)-DNA complexes did not lead to an (5-E2C-specific) enhancement of gene transfer efficiency, irrespective of the presence of the endosome-disruptive reagent chloroquine during transfection. In the second part of this thesis an alternative approach for the development of DNA-carrier proteins for nonviral gene delivery is described, based on human HMGB2, a DNA-binding protein without sequence specificity. HMGB2 contains an acidic C-terminus that has been found to decrease the affinity of the protein for DNA. Therefore, this C-terminal tail was deleted, resulting in an HMGB2-variant consisting of amino acids 1-186. HMGB2186, purified under native conditions from E. coli lysates, was able to interact with DNA and bound to the surface of different cell lines. Importantly, after binding to plasmid DNA HMGB2186 mediated gene delivery into COS-7 cells with higher efficiency than pL. In addition, HMGB2186-mediated gene transfer was strongly enhanced in the presence of chloroquine, indicating that the endocytic pathway was involved in cellular uptake. To improve internalization and intracellular routing of HMGB2186 as a DNA-carrier, a derivative containing the TAT47-57 cell-penetrating peptide (CPP), reported to facilitate cell entry independent of endocytosis, was constructed. Since this peptide also contains an NLS, in addition an HGMB2186-variant containing the SV40-NLS was constructed to investigate the effect of a peptide that has only nuclear localizing properties. Interestingly, the resulting TAT-HMGB2186 and SV40-HMGB2186 fusion proteins displayed DNA-binding activities similar to HMGB2186, but mediated gene delivery into different cell lines clearly more efficiently than the parental molecule. Furthermore, the efficacy of both fusion proteins was enhanced markedly in the presence of chloroquine, an indication that endocytosis was involved in the transfection process mediated by these proteins. This suggests that the increased transfection efficiency observed for TAT-HMGB2186 was more likely due to the NLS function present in the TAT47-57 peptide, rather than to its ‘cell penetrating properties’. Finally, the incorporation of functional peptides derived from human proteins into HMGB2186 was investigated. An uncharged CPP originating from Kaposi-FGF, reported to facilitate efficient cellular uptake of fused protein domains in an endocytosis-independent manner, was fused to HMGB2186 together with the SV40-NLS. Interestingly, the resulting KSV40-HMGB2186 fusion protein bound DNA similarly as previously tested DNA-carrier proteins, but did not mediate enhanced transfection compared to HMGB2186. In addition, the importin-b-binding (IBB) domain derived from human importin-a2 was investigated as a component of a DNA-carrier protein. Since the IBB domain can function as an NLS, it was fused to HMGB2186 resulting in the DNA-carrier protein IBBHMGB2186. Although IBB-HMGB2186 bound DNA in a similar manner as the other HMGB2186-derivatives, gene delivery mediated by IBB-HMGB2186 was only as effective as HMGB2186 mediated transfection, suggesting no significant role of the IBB domain. However, addition of chloroquine resulted in a remarkable enhancement of IBB-HMGB2186-mediated gene transfer, which was now more efficient than with any other HMGB2186-variant tested, and not much lower than gene transfer mediated by PEI, one of the most efficient transfection reagents available to date. To enhance nonviral gene delivery even further, the HMGB2186-based DNA-carrier proteins described in this thesis might now serve as building blocks for novel fusion proteins that include additional complementing activities. In this respect it seems particularly promising that, under conditions of effective end some escape, IBB-HMGB2186, which consists entirely of protein domains of human origin, was the most efficient of all proteins tested in this work.