Refine
Language
- English (43)
Has Fulltext
- yes (43)
Is part of the Bibliography
- no (43)
Keywords
Institute
- Physik (41)
- Biochemie, Chemie und Pharmazie (1)
- Medizin (1)
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
An accurate measurement of the 140Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140Ce Maxwellian-averaged cross-section.
Destruction of the cosmic γ-ray emitter 26Al in massive stars: study of the key 26Al(n,p) reaction
(2021)
The 26Al(n,p)26Mg reaction is the key reaction impacting on the abundances of the cosmic γ-ray emitter 26Al produced in massive stars and impacts on the potential pollution of the early solar system with 26Al by asymptotic giant branch stars. We performed a measurement of the 26Al(n,p)26Mg cross section at the high-flux beam line EAR-2 at the n_TOF facility (CERN). We report resonance strengths for eleven resonances, nine being measured for the first time, while there is only one previous measurement for the other two. Our resonance strengths are significantly lower than the only previous values available. Our cross-section data range to 150 keV neutron energy, which is sufficient for a reliable determination of astrophysical reactivities up to 0.5 GK stellar temperature.
The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n_TOF), which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize the beam pro↓le and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash.
The (n, γ) cross sections of the gadolinium isotopes play an important role in the study of the stellar nucleosynthesis. In particular, among the isotopes heavier than Fe, 154Gd together with 152Gd have the peculiarity to be mainly produced by the slow capture process, the so-called s-process, since they are shielded against the β-decay chains from the r-process region by their stable samarium isobars. Such a quasi pure s-process origin makes them crucial for testing the robustness of stellar models in galactic chemical evolution (GCE). According to recent models, the 154Gd and 152Gd abundances are expected to be 15-20% lower than the reference un-branched s-process 150Sm isotope. The close correlation between stellar abundances and neutron capture cross sections prompted for an accurate measurement of 154Gd cross section in order to reduce the uncertainty attributable to nuclear physics input and eventually rule out one of the possible causes of present discrepancies between observation and model predictions. To this end, the neutron capture cross section of 154Gd was measured in a wide neutron energy range (from thermal up to some keV) with high resolution in the first experimental area of the neutron time-of-flight facility n_TOF (EAR1) at CERN. In this contribution, after a brief description of the motivation and of the experimental setup used in the measurement, the preliminary results of the 154Gd neutron capture reaction as well as their astrophysical implications are presented.
233U is the fissile nuclei in the Th-U fuel cycle with a particularily small neutron capture cross setion which is on average about one order of magnitude lower than its fission cross section. Hence, the measurement of the 233U(n, γ) cross section relies on a method to accurately distinguish between capture and fission γ-rays. A measurement of the 233U α-ratio has been performed at the n_TOF facility at CERN using a so-called fission tagging setup, coupling n_TOF 's Total Absorption Calorimeter with a novel fission chamber to tag the fission γ-rays. The experimental setup is described and essential parts of the analysis are discussed. Finally, a preliminary 233U α-ratio is presented.
Accurate measurement of the standard 235U(n,f) cross section from thermal to 170 keV neutron energy
(2020)
An accurate measurement of the 235U(n,f) cross section from thermal to 170 keV of neutron energy has recently been performed at n_TOF facility at CERN using 6Li(n,t)4He and 10B(n,α)7Li as references. This measurement has been carried out in order to investigate a possible overestimation of the 235U fission cross section evaluation provided by most recent libraries between 10 and 30 keV. A custom experimental apparatus based on in-beam silicon detectors has been used, and a Monte Carlo simulation in GEANT4 has been employed to characterize the setup and calculate detectors efficiency. The results evidenced the presence of an overestimation in the interval between 9 and 18 keV and the new data may be used to decrease the uncertainty of 235U(n,f) cross section in the keV region.
Accurate neutron capture cross section data for minor actinides (MAs) are required to estimate the production and transmutation rates of MAs in light water reactors with a high burnup, critical fast reactors like Gen-IV systems and other innovative reactor systems such as accelerator driven systems (ADS). Capture reactions of 244Cm open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf. In addition, 244Cm shares nearly 50% of the total actinide decay heat in irradiated reactor fuels with a high burnup, even after three years of cooling.
Experimental data for this isotope are very scarce due to the difficulties of providing isotopically enriched samples and because the high intrinsic activity of the samples requires the use of neutron facilities with high instantaneous flux. The only two previous experimental data sets for this neutron capture cross section have been obtained in 1969 using a nuclear explosion and, more recently, at J-PARC in 2010. The neutron capture cross sections have been measured at n_TOF with the same samples that the previous experiments in J-PARC. The samples were measured at n_TOF Experimental Area 2 (EAR-2) with three C6D6 detectors and also in Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC). Preliminary results assessing the quality and limitations of these new experimental datasets are presented for the experiments in both areas. Preliminary yields of both measurements will be compared with evaluated libraries for the first time.
We have measured the capture cross section of the 155Gd and 157Gd isotopes between 0.025 eV and 1 keV. The capture events were recorded by an array of 4 C6D6 detectors, and the capture yield was deduced exploiting the total energy detection system in combination with the Pulse Height Weighting Techniques. Because of the large cross section around thermal neutron energy, 4 metallic samples of different thickness were used to prevent problems related to self-shielding. The samples were isotopically enriched, with a cross contamination of the other isotope of less than 1.14%. The capture yield was analyzed with an R-Matrix code to describe the cross section in terms of resonance parameters. Near thermal energies, the results are significantly different from evaluations and from previous time-of-flight experiments. The data from the present measurement at n_TOF are publicly available in the experimental nuclear reaction database EXFOR.
Monte Carlo simulations and n-p differential scattering data measured with Proton Recoil Telescopes
(2020)
The neutron-induced fission cross section of 235U, a standard at thermal energy and between 0.15 MeV and 200 MeV, plays a crucial role in nuclear technology applications. The long-standing need of improving cross section data above 20 MeV and the lack of experimental data above 200 MeV motivated a new experimental campaign at the n_TOF facility at CERN. The measurement has been performed in 2018 at the experimental area 1 (EAR1), located at 185 m from the neutron-producing target (the experiment is presented by A. Manna et al. in a contribution to this conference). The 235U(n,f) cross section from 20 MeV up to about 1 GeV has been measured relative to the 1H(n,n)1H reaction, which is considered the primary reference in this energy region. The neutron flux impinging on the 235U sample (a key quantity for determining the fission events) has been obtained by detecting recoil protons originating from n-p scattering in a C2H4 sample. Two Proton Recoil Telescopes (PRT), consisting of several layers of solid-state detectors and fast plastic scintillators, have been located at proton scattering angles of 25.07° and 20.32°, out of the neutron beam. The PRTs exploit the ΔE-E technique for particle identification, a basic requirement for the rejection of charged particles from neutron-induced reactions in carbon. Extensive Monte Carlo simulations were performed to characterize proton transport through the different slabs of silicon and scintillation detectors, to optimize the experimental set-up and to deduce the efficiency of the whole PRT detector. In this work we compare measured data collected with the PRTs with a full Monte Carlo simulation based on the Geant-4 toolkit.