Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Medizin (2)
Background: Multimorbidity is a phenomenon with high burden and high prevalence in the elderly. Our previous research has shown that multimorbidity can be divided into the multimorbidity patterns of 1) anxiety, depression, somatoform disorders (ADS) and pain, and 2) cardiovascular and metabolic disorders. However, it is not yet known, how these patterns are influenced by patient characteristics. The objective of this paper is to analyze the association of socio-demographic variables, and especially socio-economic status with multimorbidity in general and with each multimorbidity pattern.
Methods: The MultiCare Cohort Study is a multicentre, prospective, observational cohort study of 3.189 multimorbid patients aged 65+ randomly selected from 158 GP practices. Data were collected in GP interviews and comprehensive patient interviews. Missing values have been imputed by hot deck imputation based on Gower distance in morbidity and other variables. The association of patient characteristics with the number of chronic conditions is analysed by multilevel mixed-effects linear regression analyses.
Results: Multimorbidity in general is associated with age (+0.07 chronic conditions per year), gender (-0.27 conditions for female), education (-0.26 conditions for medium and -0.29 conditions for high level vs. low level) and income (-0.27 conditions per logarithmic unit). The pattern of cardiovascular and metabolic disorders shows comparable associations with a higher coefficient for gender (-1.29 conditions for female), while multimorbidity within the pattern of ADS and pain correlates with gender (+0.79 conditions for female), but not with age or socioeconomic status.
Conclusions: Our study confirms that the morbidity load of multimorbid patients is associated with age, gender and the socioeconomic status of the patients, but there were no effects of living arrangements and marital status. We could also show that the influence of patient characteristics is dependent on the multimorbidity pattern concerned, i.e. there seem to be at least two types of elderly multimorbid patients. First, there are patients with mainly cardiovascular and metabolic disorders, who are more often male, have an older age and a lower socio-economic status. Second, there are patients mainly with ADS and pain-related morbidity, who are more often female and equally distributed across age and socio-economic groups.
Background Multimorbidity is a highly frequent condition in older people, but well designed longitudinal studies on the impact of multimorbidity on patients and the health care system have been remarkably scarce in numbers until today. Little is known about the long term impact of multimorbidity on the patients' life expectancy, functional status and quality of life as well as health care utilization over time. As a consequence, there is little help for GPs in adjusting care for these patients, even though studies suggest that adhering to present clinical practice guidelines in the care of patients with multimorbidity may have adverse effects. Methods The study is designed as a multicentre prospective, observational cohort study of 3.050 patients aged 65 to 85 at baseline with at least three different diagnoses out of a list of 29 illnesses and syndromes. The patients will be recruited in approx. 120 to 150 GP surgeries in 8 study centres distributed across Germany. Information about the patients' morbidity will be collected mainly in GP interviews and from chart reviews. Functional status, resources/risk factors, health care utilization and additional morbidity data will be assessed in patient interviews, in which a multitude of well established standardized questionnaires and tests will be performed. Discussion The main aim of the cohort study is to monitor the course of the illness process and to analyse for which reasons medical conditions are stable, deteriorating or only temporarily present. First, clusters of combinations of diseases/disorders (multimorbidity patterns) with a comparable impact (e.g. on quality of life and/or functional status) will be identified. Then the development of these clusters over time will be analysed, especially with regard to prognostic variables and the somatic, psychological and social consequences as well as the utilization of health care resources. The results will allow the development of an instrument for prediction of the deterioration of the illness process and point at possibilities of prevention. The practical consequences of the study results for primary care will be analysed in expert focus groups in order to develop strategies for the inclusion of the aspects of multimorbidity in primary care guidelines.