Refine
Document Type
- Article (26)
Language
- English (26)
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- crystal structure (19)
- hydrogen bonding (10)
- Schiff bases (3)
- TATD (3)
- benzoxazines (3)
- co-crystalline adducts (3)
- phenolic resins (3)
- aminal structure (2)
- halogen bonding (2)
- short contacts (2)
Institute
- Biochemie und Chemie (26)
Solvent-free treatment of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecano (TATU) with 4-chloro-3,5-dimethylphenol led to the formation of the title co-crystal, C7H14N4·2C8H9ClO. The asymmetric unit contains one aminal cage molecule and two phenol molecules linked via two O-H...N hydrogen bonds. In the aminal cage, the N-CH2-CH2-N unit is slightly distorted from a syn periplanar geometry. Aromatic [pi]-[pi] stacking between the benzene rings from two different neighbouring phenol molecules [centroid-centroid distance = 4.0570 (11) Å] consolidates the crystal packing.
In the title compound, C7H14N4·2C6H5ClO, which crystallized with two crystallographically independent 4-chlorophenol molecules and one 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) molecule in the asymmetric unit, the independent components are linked by two O-H...N hydrogen bonds. The hydrogen-bond acceptor sites are two non-equivalent N atoms from the aminal cage structure, and the tricyclic system distorts by changing the C-N bond lengths. In the crystal, these hydrogen-bonded aggregates are linked into chains along the c axis by C-H...N hydrogen bonds. The crystal structure also features C-H...[pi] contacts.
Crystal structure of 1,3-bis(3-tert-butyl-2-hydroxy-5-methylbenzyl)-1,3-diazinan-5-ol monohydrate
(2016)
In the title hydrate, C28H42N2O3·H2O, the central 1,3-diazinan-5-ol ring adopts a chair conformation with the two benzyl substituents equatorial and the lone pairs of the N atoms axial. The dihedral angle between the aromatic rings is 19.68 (38)°. There are two intramolecular O-H...N hydrogen bonds, each generating an S(6) ring motif. In the crystal, classical O-H...O hydrogen bonds connect the 1,3-diazinane and water molecules into columns extending along the b axis. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0922 (18).
The title Schiff base, C19H22N2O3, was synthesized via the condensation reaction of 1,3-diaminopropan-2-ol with 4-methoxybenzaldehyde using water as solvent. The molecule exists in an E,E conformation with respect to the C=N imine bonds and the dihedral angle between the aromatic rings is 37.25 (15)°. In the crystal, O-H...N hydrogen bonds link the molecules into infinite C(5) chains propagating along the a-axis direction. The packing of these chains is consolidated by C-H...O interactions and C-H...[pi] short contacts, forming a three-dimensional network.
The title benzoxazine molecule, C18H18Br2N2O2, was prepared by a Mannich-type reaction of 4-bromophenol with ethane-1,2-diamine and formaldehyde. The title compound crystallizes in the monoclinic space group C2/c with a centre of inversion located at the mid-point of the C-C bond of the central CH2CH2 spacer. The oxazinic ring adopts a half-chair conformation. The structure is compared to those of other functionalized benzoxazines synthesized in our laboratory. In the crystal, weak C-H...Br and C-H...O hydrogen bonds stack the molecules along the b-axis direction.
The title fluorinated bisbenzoxazine, C18H18F2N2O2, crystallizes with one half-molecule in the asymmetric unit, which is completed by inversion symmetry. The fused oxazine ring adopts an approximately half-chair conformation. The two benzoxazine rings are oriented anti to one another around the central C-C bond. The dominant intermolecular interaction in the crystal structure is a C-H...F hydrogen bond between the F atoms and the axial H atoms of the OCH2N methylene group in the oxazine rings of neighbouring molecules. C-H...[pi] contacts further stabilize the crystal packing.
In the title ternary co-crystalline adduct, C7H14N4·2C6H5NO3, molecules are linked by two intermolecular O—H⋯N hydrogen bonds, forming a tricomponent aggregates in the asymmetric unit. The hydrogen-bond formation to one of the N atoms is enough to induce structural stereoelectronic effects in the normal donor→acceptor direction. In the title adduct, the two independent nitrophenol molecules are essentially planar, with maximum deviations of 0.0157 (13) and 0.0039 (13) Å. The dihedral angles between the planes of the nitro group and the attached benzene rings are 4.04 (17) and 5.79 (17)°. In the crystal, aggregates are connected by C—H⋯O hydrogen bonds, forming a supramolecular dimer enclosing an R66(32) ring motif. Additional C—H⋯O intermolecular hydrogen-bonding interactions form a second supramolecular inversion dimer with an R22(10) motif. These units are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network.
The crystal structure of the title compound, C25H24N2O2, at 173 K has monoclinic (C2/c) symmetry. The molecule is located on a crystallographic twofold rotation axis with only half a molecule in the asymmetric unit. The imidazolidine ring adopts a twist conformation, with a twist about the ring C—C bond. The crystal structure shows the anticlinal disposition of the two (2-hydroxynaphthalen-1-yl)methyl substituents of the imidazolidine ring. The structure displays two intramolecular O—H⋯N hydrogen bonds, each forming an S(6) ring motif.
The structure of the 1:2 co-crystalline adduct C8H16N4·2C6H5BrO, (I), from the solid-state reaction of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) and 4-bromophenol, has been determined. The asymmetric unit of the title co-crystalline adduct comprises a half molecule of aminal cage polyamine plus a 4-bromophenol molecule. A twofold rotation axis generates the other half of the adduct. The primary inter-species association in the title compound is through two intermolecular O—H⋯N hydrogen bonds. In the crystal, the adducts are linked by weak non-conventional C—H⋯O and C—H⋯Br hydrogen bonds, giving a two-dimensional supramolecular structure parallel to the bc plane.
Structural and vibrational studies have been carried out for the most stable conformer of 3,3′-ethane-1,2-diyl-bis-1,3,5-triazabicyclo[3.2.1]octane (ETABOC) at the DFT/B3LYP/6-31G(dp) level using the Gaussian 03 software. In light of the computed vibrational parameters, the observed IR Bolhmann bands for the C2V, C2, and Ci symmetrical structures of ETABOC have been analyzed. Hyperconjugative interaction was done by Natural Bond Orbital Analysis. Interpretation of hyperconjugative interaction involving the lone pairs on the bridgehead nitrogen atoms with the neighboring C–N and C–C bonds defines the conformational preference of the title compound. The recorded X-ray diffraction bond parameters were compared with theoretical values calculated at B3LYP/6-31G(d,p) and HF/6-31G(d,p) level of theory showed that ETABOC adopts a chair conformation and possesses an inversion center.