Refine
Document Type
- Preprint (19)
- Article (7)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (28)
Has Fulltext
- yes (28)
Is part of the Bibliography
- no (28)
Keywords
- Charge fluctuations (1)
- QGP (1)
- Relativistic heavy-ion collisions (1)
Institute
We present measurements of ρ0, ω and K∗0 spectra in π−+ C production interactions at 158 GeV / c and ρ0 spectra at 350 GeV / c using the NA61/SHINE spectrometer at the CERN SPS. Spectra are presented as a function of the Feynman’s variable xF in the range 0<xF<1 and 0<xF<0.5 for 158 and 350 GeV / c respectively. Furthermore, we show comparisons with previous measurements and predictions of several hadronic interaction models. These measurements are essential for a better understanding of hadronic shower development and for improving the modeling of cosmic ray air showers.
Measurements of the π±, K±, and proton double differential yields emitted from the surface of the 90-cm-long carbon target (T2K replica) were performed for the incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS using data collected during 2010 run. The double differential π± yields were measured with increased precision compared to the previously published NA61/SHINE results, while the K± and proton yields were obtained for the first time. A strategy for dealing with the dependence of the results on the incoming proton beam profile is proposed. The purpose of these measurements is to reduce significantly the (anti)neutrino flux uncertainty in the T2K long-baseline neutrino experiment by constraining the production of (anti)neutrino ancestors coming from the T2K target.
New results from the energy scan programme of NA49, in particular kaon production at 30 AGeV and phi production at 40 and 80 AGeV are presented. The K+/pi+ ratio shows a pronounced maximum at 30 AGeV; the kaon slope parameters are constant at SPS energies. Both findings support the scenario of a phase transition at about 30 AGeV beam energy. The phi/pi ratio increases smoothly with beam energy, showing an energy dependence similar to K-/pi-. The measured particle yields can be reproduced by a hadron gas model, with chemical freeze-out parameters on a smooth curve in the T-muB plane. The transverse spectra can be understood as resulting from a rapidly expanding, locally equilibrated source. No evidence for an earlier kinetic decoupling of heavy hyperons is found.
Results are presented from a search for the decays D0 -> K min pi plus and D0 bar -> K plus pi min in a sample of 3.8x10^6 central Pb-Pb events collected with a beam energy of 158A GeV by NA49 at the CERN SPS. No signal is observed. An upper limit on D0 production is derived and compared to predictions from several models.
Directed and elliptic flow of charged pions and protons in Pb + Pb collisions at 40 and 158 A GeV
(2003)
Directed and elliptic flow measurements for charged pions and protons are reported as a function of transverse momentum, rapidity, and centrality for 40 and 158A GeV Pb + Pb collisions as recorded by the NA49 detector. Both the standard method of correlating particles with an event plane, and the cumulant method of studying multiparticle correlations are used. In the standard method the directed flow is corrected for conservation of momentum. In the cumulant method elliptic flow is reconstructed from genuine 4, 6, and 8-particle correlations, showing the first unequivocal evidence for collective motion in A+A collisions at SPS energies.
Bose-Einstein correlations of charged kaons were measured near mid-rapidity in central Pb+Pb collisions at 158 A GeV by the NA49 experiment at the CERN SPS. Source radii were extracted using the Yano-Koonin-Podgoretsky and Bertsch-Pratt parameterizations. The results are compared to published pion data. The measured m_perp dependence for kaons and pions is consistent with collective transverse expansion of the source and a freeze-out time of about 9.5 fm.
The large acceptance and high momentum resolution as well as the significant particle identification capabilities of the NA49 experiment at the CERN SPS allow for a broad study of fluctuations and correlations in hadronic interactions. In the first part recent results on event-by-event charge and p_t fluctuations are presented. Charge fluctuations in central Pb+Pb reactions are investigated at three different beam energies (40, 80, and 158 AGeV), while for the p_t fluctuations the focus is put on the system size dependence at 158 AGeV. In the second part recent results on Bose Einstein correlations of h-h- pairs in minimum bias Pb+Pb reactions at 40 and 158 AGeV, as well as of K+K+ and K-K- pairs in central Pb+Pb collisions at 158 AGeV are shown. Additionally, other types of two particle correlations, namely pi p, Lambda p, and Lambda Lambda correlations, have been measured by the NA49 experiment. Finally, results on the energy and system size dependence of deuteron coalescence are discussed.
Rapidity distributions for Lambda and anti-Lambda hyperons in central Pb-Pb collisions at 40, 80 and 158 AGeV and for K 0 s mesons at 158 AGeV are presented. The lambda multiplicities are studied as a function of collision energy together with AGS and RHIC measurements and compared to model predictions. A different energy dependence of the Lambda/pi and anti-Lambda/pi is observed. The anti-Lambda/Lambda ratio shows a steep increase with collision energy. Evidence for a anti-Lambda/anti-p ratio greater than 1 is found at 40 AGeV.
The energy dependence of hadron production in central Pb+Pb collisions is presented and discussed. In particular, midrapidity m_T-spectra for pi-, K-, K+, p, bar p, d, phi, Lambda and bar Lambda at 40, 80 and 158 AGeV are shown. In addition Xi and Omega spectra are available at 158 AGeV. The spectra allow to determine the thermal freeze-out temperature T and the transverse flow velocity beta_T at the three energies. We do not observe a significant energy dependence of these parameters; furthermore there is no indication of early thermal freeze-out of Xi and Omega at 158 AGeV. Rapidity spectra for pi-, K-, K+ and phi at 40, 80 and 158 AGeV are shown, as well as first results on Omega rapidity distributions at 158 AGeV. The chemical freeze-out parameters T and mu_B at the three energies are determined from the total yields. The parameters are close to the expected phase boundary in the SPS energy range and above. Using the total yields of kaons and lambdas, the energy dependence of the strangeness to pion ratio is discussed. A maximum in this ratio is found at 40 AGeV. This maximum could indicate the formation of deconfined matter at energies above 40 AGeV. A search for open charm in a large sample of 158 AGeV events is presented. No signal is observed. This result is compared to several model predictions.
Rapidity distributions for $\Lambda$ and $\bar{\Lambda}$ hyperons in central Pb-Pb collisions at 40, 80 and 158 A$\cdot$GeV and for ${\rm K}_{s}^{0}$ mesons at 158 A$\cdot$GeV are presented. The lambda multiplicities are studied as a function of collision energy together with AGS and RHIC measurements and compared to model predictions. A different energy dependence of the $\Lambda/\pi$ and $\bar{\Lambda}/\pi$ is observed. The $\bar{\Lambda}/\Lambda$ ratio shows a steep increase with collision energy. Evidence for a $\bar{\Lambda}/\bar{\rm p}$ ratio greater than 1 is found at 40 A$\cdot$GeV.