Refine
Document Type
- Conference Proceeding (10)
- Article (7)
- Preprint (3)
Language
- English (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
Institute
- Physik (20)
The leptonic decay of the charged pion in the presence of background magnetic fields is investigated using quenched Wilson fermions. It is demonstrated that the magnetic field opens up a new channel for this decay. The magnetic field-dependence of the decay constants for both the ordinary and the new channel is determined. Using these inputs from QCD, we calculate the total decay rate perturbatively.
A lot of effort in lattice simulations over the last years has been devoted to studies of the QCD deconfinement transition. Most state-of-the-art simulations use rooted staggered fermions, while Wilson fermions are affected by large systematic uncertainties, such as coarse lattices or heavy sea quarks. Here we report on an ongoing study of the transition, using two degenerate flavours of nonperturbatively O(a) improved Wilson fermions. We start with Nt = 12 and 16 lattices and pion masses of 600 to 450 MeV, aiming at chiral and continuum limits with light quarks.
We explore the phase diagram of two flavour QCD at vanishing chemical potential using dynamical O(a)-improved Wilson quarks. In the approach to the chiral limit we use lattices with a temporal extent of Nt = 16 and spatial extent L = 32;48 and 64 to enable the extrapolation to the thermodynamic limit with small discretisation effects. In addition to an update on the scans at constant k, reported earlier, we present first results from scans along lines of constant physics at a pion mass of 290 MeV.We probe the transition using the Polyakov loop and the chiral condensate, as well as spectroscopic observables such as screening masses.
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
The interrelation between quantum anomalies and electromagnetic fields leads to a series of non-dissipative transport effects in QCD. In this work we study anomalous transport phenomena with lattice QCD simulations using improved staggered quarks in the presence of a background magnetic field. In particular, we calculate the conductivities both in the free case and in the interacting case, analysing the dependence of these coefficients with several parameters, such as the temperature and the quark mass.
In QCD at large enough isospin chemical potential Bose-Einstein Condensation (BEC) takes place, separated from the normal phase by a phase transition. From previous studies the location of the BEC line at the physical point is known. In the chiral limit the condensation happens already at infinitesimally small isospin chemical potential for zero temperature according to chiral perturbation theory. The thermal chiral transition at zero density might then be affected, depending on the shape of the BEC boundary, by its proximity. As a first step towards the chiral limit, we perform simulations of 2+1 flavors QCD at half the physical quark masses. The position of the BEC transition is then extracted and compared with the results at physical masses.
The introduction of non-orthogonal electric and magnetic fields in the QCD vacuum enhances the weight of topological sectors with a nonzero topological charge. For weak fields, there is a linear response for the expectation value of the topological charge. We study this linear response and relate it to the QCD correction to the axion-photon coupling. We also analyse the magnetic field dependence of the topological susceptibility for a range of temperatures around Tc. In this work we use lattice simulations with improved staggered quarks at physical masses, including background magnetic and (imaginary) electric fields.
We discuss results for the Roberge Weiss (RW) phase transition at nonzero imaginary baryon and isospin chemical potentials, in the plane of temperature and quark masses. Our study focuses on the light tricritical endpoint which has already been used as a starting point for extrapolations aiming at the chiral limit at vanishing chemical potentials. In particular, we are interested in determining how imaginary isospin chemical potential shifts the tricritical mass with respect to earlier studies at zero imaginary isospin chemical potential. A positive shift might allow one to perform the chiral extrapolations from larger quark mass values, therefore making them less computationally expensive. We also present results for the dynamics of Polyakov loop clusters across the RW phase transition.
According to perturbation theory predictions, QCD matter in the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential is expected to be in a superfluid Bardeen-Cooper-Schrieffer (BCS) phase of u and d¯ Cooper pairs. It is also expected, on symmetry grounds, that such phase connects via an analytical crossover to the phase with Bose-Einstein condensation (BEC) of charged pions at μI≥mπ/2. With lattice results, showing some indications that the deconfinement crossover also smoothly penetrates the BEC phase, the conjecture was made that the former connects continuously to the BEC-BCS crossover. We compute the spectrum of the Dirac operator, and use generalized Banks-Casher relations, to test this conjecture and identify signatures of the superfluid BCS phase.
Off-central heavy-ion collisions are known to feature magnetic fields with magnitudes and characteristic gradients corresponding to the scale of the strong interactions. In this work, we employ equilibrium lattice simulations of the underlying theory, QCD, involving similar inhomogeneous magnetic field profiles to achieve a better understanding of this system. We simulate three flavors of dynamical staggered quarks with physical masses at a range of magnetic fields and temperatures, and extrapolate the results to the continuum limit. Analyzing the impact of the field on the quark condensate and the Polyakov loop, we find non-trivial spatial features that render the QCD medium qualitatively different as in the homogeneous setup, especially at temperatures around the transition. In addition, we construct leading-order chiral perturbation theory for the inhomogeneous background and compare its prediction to our lattice results at low temperature. Our findings will be useful to benchmark effective theories and low-energy models of QCD for a better description of peripheral heavy-ion collisions.