Refine
Document Type
- Preprint (10)
- Article (3)
- Conference Proceeding (1)
- diplomthesis (1)
- Doctoral Thesis (1)
- Working Paper (1)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- CERN (1)
- CERN SPS (1)
- Charge fluctuations (1)
- Heavy Ion Collisions (1)
- Multiplicity Fluctuations (1)
- Multiplizität (1)
- Multiplizitätsfluktuationen (1)
- QGP (1)
- Quark-Gluon-Plasma (1)
- Relativistic heavy-ion collisions (1)
Institute
In this work data of the NA49 experiment at CERN SPS on the energy dependence of multiplicity fluctuations in central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV, as well as the system size dependence at 158A GeV, is analysed for positively, negatively and all charged hadrons. Furthermore the rapidity and transverse momentum dependence of multiplicity fluctuations are studied. The experimental results are compared to predictions of statistical hadron-gas and string-hadronic models. It is expected that multiplicity fluctuations are sensitive to the phase transition to quark-gluon-plasma (QGP) and to the critical point of strongly interacting matter. It is predicted that both the onset of deconfinement, the lowest energy where QGP is created, and the critical point are located in the SPS energy range. Furthermore, the predictions for the multiplicity fluctuations of statistical and string-hadronic models are different, the experimental data might allow to distinguish between them. The used measure of multiplicity fluctuations is the scaled variance omega, defined as the ratio of the variance and the mean of the multiplicity distribution. In the NA49 experiment the tracks of charged particles are detected in four large volume time projection chambers (TPCs). In order to remove possible detector effects a detailed study of event and track selection criteria is performed. Naively one would expect Poisson fluctuations in central heavy ion collisions. A suppression of fluctuations compared to a Poisson distribution is observed for positively and negatively charged hadrons at forward rapidity in Pb+Pb collisions. At midrapidity and for all charged hadrons the fluctuations are larger than the Poisson ones. The fluctuations seem to increase with decreasing system size. It is suggested that this is due to increased relative fluctuations in the number of participants. Furthermore, it was discovered that omega increases for decreasing rapidity and transverse momentum. A hadron-gas model predicts different values of omega for different statistical ensembles. In the grand-canonical ensemble, where all conservation laws are fulfilled only on the average, not on an event-by-event basis, the predicted fluctuations are the largest ones. In the canonical ensemble the charges, namely the electrical charge, the baryon number and the strangeness, are conserved for each event. The scaled variance in this ensemble is smaller than for the grand-canonical ensemble. In the micro-canonical ensemble not only the charges, but also the energy and the momentum are conserved in each event, the predicted $omega$ is the smallest one. The grand-canonical and canonical formulations of the hadron-gas model over-predict fluctuations in the forward acceptance. In contrast to the experimental data no dependence of omega on rapidity and transverse momentum is expected. For the micro-canonical formulation, which predicts small fluctuations in the total phase space, no quantitative calculation is available yet for the limited experimental acceptance. The increase of fluctuations for low rapidities and transverse momenta can be qualitatively understood in a micro-canonical ensemble as an effect of energy and momentum conservation. The string-hadronic model UrQMD significantly over-predicts the mean multiplicities but approximately reproduces the scaled variance of the multiplicity distributions at all measured collision energies, systems and phase-space intervals. String-hadronic models predict for Pb+Pb collisions a monotonous increase of omega with collision energy, similar to the observations for p+p interactions. This is in contrast to the predictions of the hadron-gas model, where omega shows no energy dependence at higher energies. At SPS energies the predictions of the string-hadronic and hadron-gas models are in the same order of magnitude, but at RHIC and LHC energies the difference in omega in the full phase space is much larger. Experimental data should be able to distinguish between them rather easily. Narrower than Poissonian (omega < 1) multiplicity fluctuations measured in the forward kinematic region (1<y(pi)<y_{beam}) can be related to the reduced fluctuations predicted for relativistic gases with imposed conservation laws. This general feature of relativistic gases may be preserved also for some non-equilibrium systems as modeled by the string-hadronic approaches. A quantitative estimate shows that the predicted maximum in fluctuations due to a first order phase transition from hadron-gas to QGP is smaller than the experimental errors of the present experiment and can therefore neither be confirmed nor disproved. No sign of increased fluctuations as expected for a freeze-out near the critical point of strongly interacting matter is observed.
Results are presented from a search for the decays D0 -> K min pi plus and D0 bar -> K plus pi min in a sample of 3.8x10^6 central Pb-Pb events collected with a beam energy of 158A GeV by NA49 at the CERN SPS. No signal is observed. An upper limit on D0 production is derived and compared to predictions from several models.
The data on mT spectra of K0S K+ and K- mesons produced in all inelastic p + p and p + pbar interactions in the energy range sqrt(s)NN=4.7-1800GeV are compiled and analyzed. The spectra are parameterized by a single exponential function, dN/(m_T*dm_T)=C exp(-m_T/T), and the inverse slope parameter T is the main object of study. The T parameter is found to be similar for K0S, K+ and K- mesons. It increases monotonically with collision energy from T~30MeV at sqrt(s)NN=4.7GeV to T~220MeV at sqrt(s)NN=1800GeV. The T parameter measured in p+p and p+pbar interactions is significantly lower than the corresponding parameter obtained for central Pb+Pb collisions at all studied energies. Also the shape of the energy dependence of T is different for central Pb+Pb collisions and p+p(pbar) interactions.
In dieser Arbeit wurde die Pionenproduktion in C + C und Si + Si - Kollisionen bei 40A GeV und 158A GeV untersucht. Dazu wurden zwei vollkommen unterschiedliche Methoden, die dE/dx- Teilchenidentifizierung und die h- - Methode, bei der der Anteil von Nicht- Pionen simuliert wird, verwendet. Die Ergebnisse beider Methoden stimmen gut überein, die Differenz fließt in den systematischen Fehler ein. Für die Bestimmung der totalen Multiplizitäten und mittleren transversalen Massen wurde die h- - Methode aufgrund ihrer größeren Akzeptanz gewählt. Zusätzlich wurde für 40A GeV C + C eine zentralitätsabhängige Analyse der Pionenmultiplizitäten vorgenommen. Die Ergebnisse dieser Analyse sollten jedoch als vorläufig angesehen werden. Die Ergebnisse meiner Analyse wurden mit der von C. Höhne [14] bei 158A GeV verglichen, sie stimmen innerhalb der Fehler überein. Es wurden Modelle zur Simulation von Kollisionen (UrQMD, Venus) vorgestellt und angewandt, um die experimentellen Ergebnisse mit den Vorhersagen der Simulationen zu vergleichen. Ein weiteres Modell (Statistical Model of the Early Stage) wurde vorgestellt, welches die qualitative und anschauliche Interpretation der Daten erlaubt. Die Ergebnisse wurden als Energie- und Systemgrößenabhängigkeitsplots zusammen mit anderen NA49- Ergebnissen, Ergebnissen anderer Experimente und Simulationsvorhersagen gezeigt und diskutiert. Der Übergang von der Unterdrückung der Pionenproduktion in Pb+Pb - Kollisionen relativ zu p+p zu einer Erhöhung der Pionenproduktion bei niedrigen SPS-Energien wurde auch bei kleinen Systemen, C + C und Si + Si , beobachtet. Eine Interpretation der Pionenmultiplizitäten mit den Statistical Model of the Early Stage legt die Vermutung nahe, dass bereits bei 40A GeV C + C - Kollisionen Quark- Gluon- Plasma gebildet wird. Diese Vermutung muss allerdings durch die Betrachtung weiterer Observabler noch bestätigt werden.
System size and centrality dependence of the balance function in A + A collisions at √sNN = 17.2 GeV
(2004)
Electric charge correlations were studied for p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sqrt s_NN = 17.2$ GeV with the NA49 large acceptance detector at the CERN-SPS. In particular, long range pseudo-rapidity correlations of oppositely charged particles were measured using the Balance Function method. The width of the Balance Function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions.
System size dependence of multiplicity fluctuations of charged particles produced in nuclear collisions at 158 A GeV was studied in the NA49 CERN experiment. Results indicate a non-monotonic dependence of the scaled variance of the multiplicity distribution with a maximum for semi-peripheral Pb+Pb interactions with number of projectile participants of about 35. This effect is not observed in a string-hadronic model of nuclear collision HIJING.
The energy dependence of multiplicity fluctuations was studied for the most central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV by the NA49 experiment at the CERN SPS. The multiplicity distribution for negatively and positively charged hadrons is significantly narrower than Poisson one for all energies. No significant structure in energy dependence of the scaled variance of multiplicity fluctuations is observed. The measured scaled variance is lower than the one predicted by the grand-canonical formulation of the hadron-resonance gas model. The results for scaled variance are in approximate agreement with the string-hadronic model UrQMD.
Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions.
Report from NA49
(2004)
The most recent data of NA49 on hadron production in nuclear collisions at CERN SPS energies are presented. Anomalies in the energy dependence of pion and kaon production in central Pb+Pb collisions are observed. They suggest that the onset of deconfinement is located at about 30 AGeV. Large multiplicity and transverse momentum fluctuations are measured for collisions of intermediate mass systems at 158 AGeV. The need for a new experimental programme at the CERN SPS is underlined.
Event-by-event fluctuations of particle ratios in central Pb + Pb collisions at 20 to 158 AGeV
(2004)
In the vicinity of the QCD phase transition, critical fluctuations have been predicted to lead to non-statistical fluctuations of particle ratios, depending on the nature of the phase transition. Recent results of the NA49 energy scan program show a sharp maximum of the ratio of K+ to Pi+ yields in central Pb+Pb collisions at beam energies of 20-30 AGeV. This observation has been interpreted as an indication of a phase transition at low SPS energies. We present first results on event-by-event fluctuations of the kaon to pion and proton to pion ratios at beam energies close to this maximum.