Refine
Document Type
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf = 2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a ~ 0:06 fm, a ~ 0:08 fm and a ~ 0:09 fm with lattice sizes ranging from L ~ 1:9 fm to L ~ 3:9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing.
We present first results from runs performed with Nf = 2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results obtained with Nf = 2 flavours. The problem of extracting the mass of the K- and D-mesons is discussed, and the tuning of the strange and charm quark masses examined. Finally we compare two methods of extracting the lattice spacings to check the consistency of our data and we present some first results of cPT fits in the light meson sector.
We perform a two-flavor dynamical lattice computation of the Isgur-Wise functions t1/2 and t3/2
at zero recoil in the static limit. We find t1/2(1) = 0.297(26) and t3/2(1) = 0.528(23) fulfilling
Uraltsev’s sum rule by around 80%. We also comment on a persistent conflict between theory and
experiment regarding semileptonic decays of B mesons into orbitally excited P wave D mesons,
the so-called “1/2 versus 3/2 puzzle”, and we discuss the relevance of lattice results in this
context.