### Refine

#### Year of publication

#### Language

- English (36)

#### Has Fulltext

- yes (36)

#### Is part of the Bibliography

- no (36)

#### Keywords

- Bipolar disorder (1)
- Diagnostic markers (1)

Positron creation in crossed-beam collisions of high-energy, fully stripped heavy ions is investigated within the coupled-channel formalism. In comparison with fixed-target collisions of highly stripped heavy-ion projectiles positron production probabilities are enhanced by more than one order of magnitude. The increase results from the possibility to excite electrons from the negative energy continuum into all bound states. The positron spectrum is shifted towards higher energies because of the absence of electron screening. Rutherford scattering as well as nuclear collisions with time delay are investigated. We also discuss the filling of empty bound states by electrons from pair-production processes.

Excitations of the atomic shell in heavy-ion collisions are influenced by the presence of a nuclear reaction. In the present Rapid Communication we point out the equivalence between a semiclassical description based on the nuclear autocorrelation function with an earlier model which employs a distribution of reaction times f(T). For the example of U+U collisions, results of coupled-channel calculations for positron creation and K-hole excitations are discussed for two schematic reaction models.

Atomic excitations are used to obtain information on the course of a nuclear reaction. Employing a semiclassical picture we calculate the emission of δ electrons and positrons in deep inelastic nuclear reactions for the example of U+U collisions incorporating nuclear trajectories resulting from two different nuclear friction models. The emission spectra exhibit characteristic deviations from those expected for elastic Coulomb scattering. The theoretical probabilities are compared with recent experimental data by Backe et al. A simple model is used to estimate the influence of a threebody breakup of the compound system upon atomic excitations.

Collisions of very heavy ions at energies close to the Coulomb barrier are discussed as a unique tool to study the behavior of the electron-positron field in the presence of strong external electromagnetic fields. To calculate the excitation processes induced by the collision dynamics, a semiclassical model is employed and adapted to describe the field-theoretical many-particle system. An expansion in the adiabatic molecular basis is chosen. Energies and matrix elements are calculated using the monopole approximation. In a supercritical (Z1+Z2≳173) quasiatomic system the 1s level joins the antiparticle continuum and becomes a resonance, rendering the neutral vacuum state unstable. Several methods of treating the corresponding time-dependent problem are discussed. A projection-operator technique is introduced for a fully dynamical treatment of the resonance. Positron excitation rates in s1/2 and p1/2 states are obtained by numerical solution of the coupled-channel equations and are compared with results from first- plus second-order perturbation theory. Calculations are performed for subcritical and supercritical collisions of Pb-Pb, Pb-U, U-U, and U-Cf. Strong relativistic deformations of the wave functions and the growing contributions from inner-shell bound states lead to a very steep Z dependence of positron production. The results are compared with available data from experiments done at GSI. Correlations between electrons and positrons are briefly discussed.

Binding energies and wave functions of inner-shell electronic states in superheavy quasimolecules with (Zp+Zt)α>1 are calculated. Ionization during a collision of very heavy ions is investigated within a molecular basis generated by the solutions of the two-center Dirac equation. Transitions to vacant bound states as well as direct excitation to the continuum are taken into account. We present theoretical values for the ionization probability as a function of impact parameter, bombarding energy, and combined nuclear charge. Our computed results are compared with recent experimental data. It is suggested that relativistic binding energies of electrons in superheavy quasimolecules can be determined experimentally via the impact-parameter dependence of ionization and the anisotropy of quasimolecular radiation.

The energy shift of K electrons in heavy atoms due to the self-energy correction has been calculated. This process is treated to all orders in Zα, where Z denotes the nuclear charge. For the superheavy system Z=170, where the K-shell binding energy reaches the pair-production threshold (E1sb∼2mc2), a shift of +11.0 keV is found. This shift is almost cancelled by the vacuum polarization, leaving a negligible effect for all quantum-electrodynamical corrections of order α but all orders of Zα.

The theory of direct electron-positron pair production in the collision of heavy ions is formulated in the framework of the quasimolecular model. The pair production process acquires a collective nature for (Z1+Z2)α>1 and can be understood as the shakeoff of the strong vacuum polarization cloud formed in the quasimolecule. The total cross section is, e.g., 76 μb for Pb + Pb at Coulomb barrier energies.

Phenomenological consequences of a hypothetical light neutral particle in heavy ion collisions
(1986)

We discuss the possibility that the line structure observed in the spectrum of the positrons produced in heavy ion collisions is due to the decay of a new neutral elementary particle. We argue that this can be ruled out unless one is willing to accept fine tuning of parameters, or to assume the dominance of nonlinear effects.

A new spontaneous-symmetry-breaking mechanism is formulated for SU(3), which is used to describe the formation of bags around quarks. The Higgs field is replaced by the scalar product of two colored fermion fields. This model gives mass only to one gluon (equivalent to Aμ8) when spontaneously broken. The consequences of this scheme are discussed, and it is argued that it can explain several puzzling high-energy heavy-ion experiments.

The magnetic dipole scattering of neutrinos by the electrostatic potentials of single atoms as well as crystals is investigated. It is shown that scattering by a rigid cubic lattice can amplify the neutrino-atom cross section by a factor of N1/3, N being the number of scatterers. However, comparing the results with typical weak-interaction cross sections, the effect seems to be not observable in experiment.