Refine
Year of publication
- 2008 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
Self-inactivating gammaretroviral vectors for the gene therapy of chronic granulomatous disease
(2008)
Chronic granulomatous disease (CGD) is a rare inherited primary immunodeficiency characterized by defective intracellular oxidative killing of ingested invading microbes by PMN and monocytes. It is caused by mutations in one of the four genes coding for the essential subunits of the NADPH oxidase (gp91phox, p47phox, p67phox and p22phox). Approximately 75% of the CGD cases are due to mutations in the gp91phox gene. If regular care and conventional therapy fail, the recommended therapy is allogeneic bone marrow transplantation (BMT), but only if a matched donor is available. A therapeutic option for patients lacking suitable donors is the genetic modification of autologous hematopoietic stem cells. The gene therapy offers an interesting alternative to BMT since it implies a less invasive treatment and represents a possibly unique curative option for patients with no suitable donor. Gammaretroviral vectors were already used in some gene therapy trials for CGD and other immunodeficiencies showing relevant clinical benefit. However, these trials uncovered an unexpected mutagenic side effect. If the retrovial integration ocurrs near to, or into proto-oncogenes this might lead to clonal dominance or even malignant transformation (Hacein-Bey-Abina et al., 2003a; Ott et al., 2006). Therefore, there was a need to further improve the safety of these vectors and to this end the self-inactivating gammaretroviral vectors were engineered. Non essential sequences for virus infectivity and integration, which might influence the surrounding gene expression, were deleted in these vectors. In the first set of experiments, a series of SIN gamma retroviral vectors was cloned driving the expression of the wild-type gp91phox cDNA under the control of a viral constitutive SFFV promoter. However initial studies with these vectors failed because the titers of the virus produced by transient transfection protocols were extremely low (<5x105 TU/ml). Therefore, a codon optimization of the gp91phox cDNA was considered as an alternative. The codon optimized synthetic gp91phox gene was used to construct a SIN gammaretroviral vector, again under the control of the SFFV promoter (Schambach et al., 2006c). With this vector an increase in titer was observed compared to the native gp91phox sequence, which was due to the improved transcription in 293T transfected cells. The enhancement of the synthetic gp91phox transcription led to a higher internal transcript production and protein expression. An enhanced superoxide production in transduced myelomonocytic X-CGD PLB-985 populations was also detected. All these data indicate that the synthetic gp91phox might represent an excellent alternative to those former constructs expressing the native gp91phox transgene. Since it was postulated that the SFFV promoter could still cause transactivation of neighboring genes due to its strength (Modlich et al., 2006), three different non-viral promoters were tested, one constitutive (the EFs promoter) and two myeloid-specific promoters (the c-fes and MRP8 promoter). The three SIN gammaretroviral vectors were able to generate high titers after transient transfection of 293T packaging cells, to efficiently transduce the X-CGD PLB-985 cell line and to reconstitute the NADPH oxidase activity to a high degree. In mouse transplantation experiments, the EFs promoter showed a high variable transgene expression in the different lineages analyzed, and the c-fes promoter showed also a ubiquitinous expression. In contrast, the MRP8 promoter showed a high myeloid specificity since gp91phox expression in mSca-1+ cells and lymphoid B cells from transplanted mice was extremly low and even absent. However, the lowest levels of transgene expression were observed in the myeloid populations both in bone marrow and peripheral blood with this vector. When the oxidase reconstitution ability of these promoters was tested, the numbers of superoxide producing cells obtained were similar than those observed in the clinical X-CGD trial conducted by the groups of Dr. M. Grez and Prof. R. A. Seger (over 35% in one patient and ~15% in the second), which led to the eradication of therapy refractory infections (Ott et al., 2006). Between the three constructs, the MRP8 promoter was less effective in restoring the NADPH oxidase activity than the EFs and c-fes promoters. The c-fes promoter reached the highest levels of DHR reactive cells in the highest number of mice. Overall, these data showed that between all constructs tested, the c-fes containing construct in combination with the codon optimized gp91phox sequence showed the best performance within the SIN gammaretroviral backbone. It generated the highest titers in combination with a better NADPH oxidase reconstituting ability. One main goal in the development of SIN gammaretroviral vectors is reducing the genotoxic effect due to random vector integration. An improved gene transfer and expression, and a constant performance are also highly desirable. The present study shows that the c-fes SIN vector in combination with the synthetic gp91phox may be considered as an effective gene therapy strategy for the restoration of the NADPH oxidase activity in CGD. It allows the use of a cellular promoter generating adequate physiological levels of the therapeutic protein and reduces the number of vector copies required for a therapeutic effect.