• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Relja, Borna (44)
  • Marzi, Ingo (30)
  • Hildebrand, Frank (12)
  • Störmann, Philipp (9)
  • Horst, Klemens (8)
  • Sturm, Ramona (8)
  • Janicova, Andrea (7)
  • Vollrath, Jan Tilmann (7)
  • Wagner, Nils (7)
  • Pape, Hans-Christoph (6)
+ more

Year of publication

  • 2019 (7)
  • 2020 (7)
  • 2017 (6)
  • 2018 (5)
  • 2021 (4)
  • 2014 (3)
  • 2016 (3)
  • 2012 (2)
  • 2022 (2)
  • 2005 (1)
+ more

Document Type

  • Article (43)
  • Doctoral Thesis (1)

Language

  • English (44)

Has Fulltext

  • yes (44)

Is part of the Bibliography

  • no (44)

Keywords

  • Biomarker (5)
  • Inflammation (5)
  • inflammation (5)
  • polytrauma (5)
  • trauma (4)
  • Lung failure (3)
  • Trauma (3)
  • CC16 (2)
  • CD14 (2)
  • Experimental models of disease (2)
+ more

Institute

  • Medizin (42)
  • Biowissenschaften (1)
  • Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (1)

44 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Rapid development of intestinal cell damage following severe trauma : a prospective observational cohort study (2009)
de Haan, Jacco J. ; Lubbers, Tim ; Derikx, Joep P. ; Relja, Borna ; Henrich, Dirk ; Greve, Jan-Willem ; Marzi, Ingo ; Buurman, Wim A.
Introduction Loss of intestinal integrity has been implicated as an important contributor to the development of excessive inflammation following severe trauma. Thus far, clinical data concerning the occurrence and significance of intestinal damage after trauma remain scarce. This study investigates whether early intestinal epithelial cell damage occurs in trauma patients and, if present, whether such cell injury is related to shock, injury severity and the subsequent inflammatory response. Methods Prospective observational cohort study in 96 adult trauma patients. Upon arrival at the emergency room (ER) plasma levels of intestinal fatty acid binding protein (i-FABP), a specific marker for damage of differentiated enterocytes, were measured. Factors that potentially influence the development of intestinal cell damage after trauma were determined, including the presence of shock and the extent of abdominal trauma and general injury severity. Furthermore, early plasma levels of i-FABP were related to inflammatory markers interleukin-6 (IL-6), procalcitonin (PCT) and C-reactive protein (CRP). Results Upon arrival at the ER, plasma i-FABP levels were increased compared with healthy volunteers, especially in the presence of shock (P < 0.01). The elevation of i-FABP was related to the extent of abdominal trauma as well as general injury severity (P < 0.05). Circulatory i-FABP concentrations at ER correlated positively with IL-6 and PCT levels at the first day (r2 = 0.19; P < 0.01 and r2 = 0.36; P < 0.001 respectively) and CRP concentrations at the second day after trauma (r2 = 0.25; P < 0.01). Conclusions This study reveals early presence of intestinal epithelial cell damage in trauma patients. The extent of intestinal damage is associated with the presence of shock and injury severity. Early intestinal damage precedes and is related to the subsequent developing inflammatory response.
Impaired surface expression of HLA-DR, TLR2, TLR4, and TLR9 in ex vivo-in vitro stimulated monocytes from severely injured trauma patients (2017)
Heftrig, David ; Sturm, Ramona ; Oppermann, Elsie ; Kontradowitz, Kerstin ; Jurida, Katrin ; Schimunek, Lukas ; Woschek, Mathias ; Marzi, Ingo ; Relja, Borna
Objective: Trauma patients (TP) frequently develop an imbalanced immune response that often causes infectious postinjury complications. Monocytes show a diminished capability of both producing proinflammatory cytokines and antigen presentation after trauma. TLR2, TLR4, and TLR9 recognize pathogens and subsequently activate monocytes. While there are conflictive data about TLR2 and TLR4 expression after trauma, no studies about the expression of TLR2, TLR4, TLR9, and HLA-DR on monocytes from TP after their secondary ex vivo-in vitro “hit” have been reported. Methods/Results: Ex vivo-in vitro lipopolysaccharide- (LPS-) stimulated blood from TP showed diminished interleukin- (IL-) 1β-release in TP for five postinjury days compared to healthy volunteers (HV). The recovery was observed at day 5. In parallel, monocytes from TP showed an impaired capability of TLR2, TLR4, and TLR9 expression after secondary stimulation compared to HV, while the measurement of unstimulated samples showed significant reduction of TLR4 and TLR9 at ED. Furthermore, HLA-DR decreased after trauma and was even more profound by stimulation of monocytes. Ratio of monocytes to leukocytes was significantly increased at days 6 and 7 after trauma compared to HV. Conclusion: Impaired expression of TLRs and HLA-DR in acute inflammatory conditions may be responsible for the well-described monocyte paralysis after severe trauma.
Therapy of hemorrhagic shock with following resuscitation-induced liver injury : in vivo study (2010)
Relja, Borna
Shock resulting from life-threatening blood-loss (hemorrhagic shock) represents the most frequent injury pattern after a traumatic insult. Hemorrhagic shock induces inflammatory changes, characterized by highly complex pathophysiological pathways often resulting in death. In this study, we establish an experimental in vivo model of H/R in rats and study the mechanisms which determine the hepatic injury after H/R. Furthermore, we show that hemorrhagic shock with following resuscitation is accompanied with release of systemic and local pro-inflammatory mediators, increased infiltration of hepatic neutrophils in the liver, increased oxidative and nitrosative stress, enhanced cell death of both types, apoptosis and necrosis, conspicuous cytoskeletal rearrangements, loss of hepatic integrity and finally high general mortality rates, up to 80%. In addition, the effects of two potential therapeutic interventions to prevent the H/R induced liver injury are explored in a model of H/R in rats. First, the role of JNK and its inhibition by D-JNKI-1 in preservation of hepatic integrity following H/R was analyzed. Second, we investigated the potential of simvastatin to prevent the disturbed inflammatory response and hepatic injury after H/R. The effects of both therapeutic interventions were studied by looking at several inflammatory parameters, markers of oxidative and nitrosative stress, cytoskeleton integrity, microcirculatory parameters, underlying signaling cascades, liver damage and mortality. Highly specific blockade of JNK with the potent, inhibitory peptide D-JNKI-1 revealed the crucial role of the JNK signaling pathway in the H/R induced pathophysiology and strong protective effects of DJNKI- 1 in H/R induced liver injury, when the peptide was applied before and even after hemorrhagic shock. The other therapeutic intervention tested in this study was the use of simvastatin which also revealed protective effects after H/R and even a remarkable improvement in survival after H/R. We show that H/R induced release of pro-inflammatory cytokines, hepatic PMNL infiltration, increased oxidative and nitrosative stress, apoptosis and necrosis can be diminished by treatment with D-JNKI-1 but also with simvastatin in vivo. Furthermore, simvastatin reduces H/R induced cytoskelatal rearrangements, loss of liver integrity and the mortality rate after H/R. The key pathway which underlies these beneficial effects of simvastatin is the Rho kinase pathway. Identification of both mechanisms as well as the effectiveness of both substances provide new insights in the close interaction between hypoxia and the immune system and present a promising basis for the anti-inflammatory, hepatoprotective treatment after H/R.
Ethanol decreases inflammatory response in human lung epithelial cells by inhibiting the canonical NF-kB-pathway (2017)
Mörs, Katharina ; Hörauf, Jason-Alexander ; Kany, Shinwan ; Wagner, Nils ; Sturm, Ramona ; Woschek, Mathias ; Perl, Mario ; Marzi, Ingo ; Relja, Borna
Background/Aims: Alcohol (ethanol, EtOH) as significant contributor to traumatic injury is linked to suppressed inflammatory response, thereby influencing clinical outcomes. Alcohol-induced immune-suppression during acute inflammation (trauma) was linked to nuclear factor-kappaB (NF-ĸB). Here, we analyzed alcohol`s effects and mechanisms underlying its influence on NF-ĸB-signaling during acute inflammation in human lung epithelial cells. Methods: A549-cells were stimulated with interleukin (IL)-1β, or sera from trauma patients (TP) or healthy volunteers, with positive/negative blood alcohol concentrations (BAC), and subsequently exposed to EtOH (170 Mm, 1h). IL-6-release and neutrophil adhesion to A549 were analyzed. Specific siRNA-NIK mediated downregulation of non-canonical, and IKK-NBD-inhibition of canonical NF-ĸB signaling were performed. Nuclear levels of activated p50 and p52 NF-ĸB-subunits were detected using TransAm ELISA. Results: Both stimuli significantly induced IL-6-release (39.79±4.70 vs. 0.58±0.8 pg/ml) and neutrophil adhesion (132.30±8.80 vs. 100% control, p<0.05) to A549-cells. EtOH significantly decreased IL-6-release (22.90±5.40, p<0.05) and neutrophil adherence vs. controls (105.40±14.5%, p<0.05). IL-1β-induced significant activation of canonical/p50 and non-canonical/p52 pathways. EtOH significantly reduced p50 (34.90±23.70 vs. 197.70±36.43, p<0.05) not p52 activation. Inhibition of canonical pathway was further increased by EtOH (less p50-activation), while p52 remained unaltered. Inhibition of non-canonical pathway was unchanged by EtOH. Conclusion: Here, alcohol`s anti-inflammatory effects are mediated via decreasing nuclear levels of activated p50-subunit and canonical NF-ĸB signaling pathway.
Long-term effects of induced hypothermia on local and systemic inflammation - results from a porcine long-term trauma model (2016)
Horst, Klemens ; Eschbach, Daphne-Asimenia ; Pfeifer, Roman ; Relja, Borna ; Sassen, Martin ; Steinfeldt, Thorsten ; Wulf, Hinnerk ; Vogt, Nina ; Frink, Michael ; Ruchholtz, Steffen ; Pape, Hans-Christoph ; Hildebrand, Frank
Background: Hypothermia has been discussed as playing a role in improving the early phase of systemic inflammation. However, information on the impact of hypothermia on the local inflammatory response is sparse. We therefore investigated the kinetics of local and systemic inflammation in the late posttraumatic phase after induction of hypothermia in an established porcine long-term model of combined trauma. Materials & Methods: Male pigs (35 ± 5kg) were mechanically ventilated and monitored over the study period of 48 h. Combined trauma included tibia fracture, lung contusion, liver laceration and pressure-controlled hemorrhagic shock (MAP < 30 ± 5 mmHg for 90 min). After resuscitation, hypothermia (33°C) was induced for a period of 12 h (HT-T group) with subsequent re-warming over a period of 10 h. The NT-T group was kept normothermic. Systemic and local (fracture hematoma) cytokine levels (IL-6, -8, -10) and alarmins (HMGB1, HSP70) were measured via ELISA. Results: Severe signs of shock as well as systemic and local increases of pro-inflammatory mediators were observed in both trauma groups. In general the local increase of pro- and anti-inflammatory mediator levels was significantly higher and prolonged compared to systemic concentrations. Induction of hypothermia resulted in a significantly prolonged elevation of both systemic and local HMGB1 levels at 48 h compared to the NT-T group. Correspondingly, local IL-6 levels demonstrated a significantly prolonged increase in the HT-T group at 48 h. Conclusion: A prolonged inflammatory response might reduce the well-described protective effects on organ and immune function observed in the early phase after hypothermia induction. Furthermore, local immune response also seems to be affected. Future studies should aim to investigate the use of therapeutic hypothermia at different degrees and duration of application.
Mycophenolate mofetil modulates adhesion receptors of the beta I integrin family on tumor cells: impact on tumor recurrence and malignancy (2005)
Engl, Tobias A. ; Makarević, Jasmina ; Relja, Borna ; Natsheh, Iyad Y. M. ; Müller, Iris ; Beecken, Wolf-Dietrich ; Jonas, Dietger ; Blaheta, Roman A.
Background: Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods: Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 &#956;M MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results: Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 &#956;M MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion: We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype.
Acute ethanol gavage attenuates hemorrhage/resuscitation-induced hepatic oxidative stress in rats (2012)
Relja, Borna ; Wilhelm, Kerstin ; Wang, Minhong ; Henrich, Dirk ; Marzi, Ingo ; Lehnert, Mark
Acute ethanol intoxication increases the production of reactive oxygen species (ROS). Hemorrhagic shock with subsequent resuscitation (H/R) also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.). Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE) and nitrosative (3-nitrotyrosine, 3-NT) stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.
Early local inhibition of club cell protein 16 following chest trauma reduces late sepsis-induced acute lung injury (2019)
Störmann, Philipp ; Becker, Nils ; Vollrath, Jan Tilmann ; Köhler, Kernt ; Janicova, Andrea ; Wutzler, Sebastian ; Hildebrand, Frank ; Marzi, Ingo ; Relja, Borna
Blunt thoracic trauma (TxT) deteriorates clinical post-injury outcomes. Ongoing inflammatory changes promote the development of post-traumatic complications, frequently causing Acute Lung Injury (ALI). Club Cell Protein (CC)16, a pulmonary anti-inflammatory protein, correlates with lung damage following TxT. Whether CC16-neutralization influences the inflammatory course during ALI is elusive. Ninety-six male CL57BL/6N mice underwent a double hit model of TxT and cecal ligation puncture (CLP, 24 h post-TxT). Shams underwent surgical procedures. CC16 was neutralized by the intratracheal application of an anti-CC16-antibody, either after TxT (early) or following CLP (late). Euthanasia was performed at 6 or 24 h post-CLP. Systemic and pulmonary levels of IL-6, IL-1β, and CXCL5 were determined, the neutrophils were quantified in the bronchoalveolar lavage fluid, and histomorphological lung damage was assessed. ALI induced a significant systemic IL-6 increase among all groups, while the local inflammatory response was most prominent after 24 h in the double-hit groups as compared to the shams. Significantly increased neutrophilic infiltration upon double hit was paralleled with the enhanced lung damage in all groups as compared to the sham, after 6 and 24 h. Neutralization of CC16 did not change the systemic inflammation. However, early CC16-neutralization increased the neutrophilic infiltration and lung injury at 6 h post-CLP, while 24 h later, the lung injury was reduced. Late CC16-neutralization increased neutrophilic infiltration, 24 h post-CLP, and was concurrent with an enhanced lung injury. The data confirmed the anti-inflammatory potential of endogenous CC16 in the murine double-hit model of ALI.
Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion (2016)
Jüngel, Eva ; Krüger, Geraldine ; Rutz, Jochen ; Nelson, Karen ; Werner, Isabella ; Relja, Borna ; Seliger, Barbara ; Fißlthaler, Beate ; Fleming, Ingrid ; Tsaur, Igor ; Haferkamp, Axel ; Blaheta, Roman A.
Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN.
Correction : renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion (2017)
Jüngel, Eva ; Krüger, Geraldine ; Rutz, Jochen ; Nelson, Karen ; Werner, Isabella ; Relja, Borna ; Seliger, Barbara ; Fißlthaler, Beate ; Fleming, Ingrid ; Tsaur, Igor ; Haferkamp, Axel ; Blaheta, Roman A.
Present: Due to an error in the production process, figures 5 and 6 were switched. Each figure legend is correct, but is associated with the wrong figure.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks