Refine
Year of publication
- 2006 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
- Pharmazie (1)
G protein-coupled receptors (GPCRs) comprise the largest membrane protein family and play an essential role in signal transduction through the cell membrane. They are currently the targets of approximately 50 % of the pharmaceuticals on the market (Klabunde and Hessler, 2002). However, only one high-resolution GPCR structure has been determined up to now, that of bovine rhodopsin (Palczewski et al., 2000). The GPCR activation and regulation mechanisms are still unknown and other GPCR structures are thus required. MePNet (Membrane Protein Network) was a European consortium dedicated to structural studies of GPCRs. The approach was to produce 100 GPCRs in three expression systems (Escherichia coli, Pichia pastoris and Semliki Forest Virus infected mammalian cells) in order to select at each step of the process (production, solubilization, purification) the constructs that fulfilled quantity and quality (functionality) requirements for crystallization trials. In our team, we screened 38 of the 100 targets in P. pastoris. For each receptor, the clone with the highest production level was identified by dot-blot. The size and homogeneity of each receptor were then analyzed by Western-blot. The human adenosine A2A receptor showed a well-defined and pronounced single band and was thus selected for further characterization. The adenosine A2A receptor is a GPCR mainly localized in the central nervous system and, as it antagonizes dopaminergic activity, it has great potential as a drug target for the treatment of Parkinson’s disease. Functional characterization by binding assays with the specific antagonist [3H]-ZM241385 demonstrated a Bmax of 56 +/- 3 pmol/mg i.e. pmol of binder per milligram of total membrane protein, and a KD of 0.40 +/- 0.02 nM. Receptor production was then improved by lowering the induction temperature, decreasing the induction time and adding DMSO to the medium. For large-scale production, fermention reached around 300 g cells (wet weight)/L culture, which provided 43 mg of functional receptor in membranes per liter of culture. Functional solubilization was achieved with dodecyl-β-D-maltoside and the soluble yield was increased to 70-80 % of the membrane content by addition of cholesteryl hemisuccinate and increasing the ionic strength. The receptor was successfully purified via Ni-NTA and monomeric avidin chromatography in the presence of the antagonist ZM241385. This strategy produced a pure, homogeneous and stable receptor preparation with functionality demonstrated by radioligand binding assays. The total receptor yield after purification was routinely around 20 % of the membrane functional receptor content and 2 g of membranes provided 4 mg of pure receptor for crystallization trials. GPCRs are very difficult targets for crystallization, and co-crystallization with antibody fragments has been shown to be a successful method for crystallization of membrane proteins. In order to develop such a tool for the adenosine A2A receptor, a single-chain Fv (scFv) fragment specific to the purified receptor was selected by phage display. The receptor was functionally immobilized on the surface of streptavidin beads and after two rounds of selection, 6 different phages were identified several times. After production in E. coli and purification via Ni-NTA affinity chromatography, 4 out of the 6 scFv fragments were sufficiently enriched to be tested by ELISA. For the ELISA, the receptor was functionally immobilized via the biotinylation domain of the construct in a 96-well streptavidin-coated plate. The antibody fragments binding to the receptor were identified based on interaction with HRP-conjugated protein L. One scFv fragment gave a positive ELISA signal 10 fold above background and titration of the scFv fragment binding to the receptor was specific and saturable. However no complex of scFv fragment and receptor was observed on gel filtration. In order to have a more sensitive detection method, the scFv fragment was labeled with fluorescein: a complex was then observed up on gel filtration but the binding appeared to be non-specific. A pull-down assay with immobilized non-labeled scFv fragment finally confirmed the specificity of the binding, but also the low affinity of the interaction. Affinity maturation of this specific scFv fragment by a random mutagenesis and selection process should improve this parameter in order to obtain an adapted tool for co-crystallization.