Refine
Year of publication
- 2007 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Actin-bindende Proteine (1)
- Axoninitialsegment (1)
- Dornapparat (1)
- Hippocampus (1)
- Kalziumspeicher (1)
- Neuronale Plastizität (1)
- Spine (1)
- Zellskelett (1)
- actin (1)
- calcium store (1)
Institute
Synaptopodin is the founding member of a family of actin-associated proline-rich proteins. It is present in a subset of telencephalic dendritic spines, where it is tightly associated with the dendritic spine apparatus, a putative calcium store. Synaptopodin-deficient mice lack the spine apparatus and show deficits in long-term potentiation and spatial memory. Thus, synaptopodin appears to play a role in synaptic plasticity. In the present thesis, three major questions were addressed: (1) What is the distribution of synaptopodin and the spine apparatus in identified hippocampal neurons? (2) Is the distribution of synaptopodin affected by denervation? (3) Is synaptopodin involved in the regulation of denervation-induced spine loss? The major findings of this thesis are: (1) Immunohistochemistry in the hippocampus of wildtype and EGFP-transgenic mice revealed significant layer-specific differences in the prevalence of synaptopodin at the level of individual neurons. (2) Light and electron microscopic analysis also revealed the presence of synaptopodin in axon initial segments of cortical and hippocampal principal neurons. There, it was found to be an essential component of the cisternal organelle, a putative axonal homologue of the dendritic spine apparatus. (3) Immunohistochemistry in the rat fascia dentata before and following entorhinal deafferentation revealed changes in synaptopodin expression in denervated and non-denervated layers of the hippocampus, suggesting that the distribution of synaptopodin in hippocampal neurons is regulated by presynaptic signals. (4) The dynamics of denervation-induced spine plasticity were studied in vitro using confocal live imaging of organotypic entorhino-hippocampal slice cultures. Whereas spines were remarkably stable under control conditions, spine loss and spine formation were seen following denervation. No significant differences were observed between cultures from wildtype and synaptopodin-deficient mice, suggesting that synaptopodin is not involved in lesion-induced spine plasticity. (5) Finally, a set of transgenic mice expressing fluorescently tagged synaptopodin were generated to facilitate future experiments on the dynamics and function of synaptopodin. In summary, this thesis presents novel findings on (1) the subcellular distribution of synaptopodin in spines and the axon initial segment, (2) the molecular composition of the cisternal organelle, and (3) the dynamics of spines and the spine apparatus organelle following deafferentation in vivo and in vitro.