Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Endothelzelle (1)
- Genregulation (1)
- Schubspannung (1)
- Stressreaktion (1)
Institute
- Biowissenschaften (1)
- Medizin (1)
Die Atherosklerose ist eine chronischentzündliche Erkrankung der Blutgefäße, die nach der "responsetoinjury"Hypothese durch die Verletzung des Endothels initiiert wird. Dabei führt die Aktivierung von Endothelzellen durch verschiedene proatherosklerotische Faktoren, wie z.B. das Komplementsystem oder das CD40 System, zur "Endotheldysfunktion". In den betroffenen Bereichen des Gefäßes entstehen frühe atherosklerotische Läsionen, die durch veränderte Adhäsivität und Permeabilität des Endothels zur Rekrutierung und Aktivierung verschiedener Entzündungszellen und somit zum Fortschreiten der inflammatorischen Reaktion und zur Progression der Atherosklerose führen. Die laminare Schubspannung des fließenden Blutes (Shear Stress) ist einer der wichtigsten endogenen atheroprotektiven Faktoren im kardiovaskulären System. Dagegen sind Störungen der lokalen Hämodynamik im Blutgefäß mit endothelialer Dysfunktion und dem Auftreten von atherosklerotischen Läsionen assoziiert. Zur Identifizierung atheroprotektiver Mechanismen wurde die Shear Stressregulierte Genexpression in Endothelzellen mittels ''Atlas cDNA Expression Array" im Rahmen dieser Arbeit untersucht. Von den 55 Shear Stressinduzierten Genen, wurde die Expression der potentiell antiinflammatorischen Proteine Clusterin und TRAF3 und der möglichen Mechanotransduktoren Integrin alpha5 und Integrin ß1 analysiert und die Bedeutung für die Funktion von Endothelzellen untersucht. Shear StressExposition erhöhte spezifisch die Expression des KomplementInhibitors Clusterin. Zusätzlich inhibierte Shear Stress, über die erhöhte Clusterin Expression, die Komplementinduzierte Expression der proinflammatorischen Chemokine MCP1 (''Monocyte chemoattractant protein1") und Interleukin8, die Monozyten und Leukozyten anlocken und die Entzündungsreaktion der Endothelzellen vorantreiben. Desweiteren konnte gezeigt werden, daß Shear Stress die Expression des inhibitorischen Proteins TRAF3 (''tumor necrosis factor receptorassociated factor 3"), das an der CD40Signalkaskade beteiligt ist, erhöht. Im Gegensatz dazu, wurden weder die homologen Proteine TRAF2 und TRAF5, noch der CD40 Rezeptor oder CD40 Ligand durch Shear Stress reguliert. Sowohl Shear Stress als auch TRAF3 hemmen die CD40induzierte Expression des proinflammatorischen Proteins MCP1 und des prothrombotischen Proteins "Tissue Factor". Entgegen den Erwartungen lokalisierte TRAF3, das urprünglich als Rezeptorassoziiertes Adapterprotein identifiziert wurde, hauptsächlich im Zellkern. Demzufolge könnte TRAF3 eine inhibitorische Funktion im Zellkern ausüben, indem es beispielsweise die Translokation von MAPKinasen oder die Bindung von Transkriptionsfaktoren an die DNA beeinflußt. Die Umsetzung von mechanischen Kräften in biochemische Signale im Zytoplasma ist Voraussetzung für den protektiven Effekt von Shear Stress auf Endothelzellen. Als Mechanotransduktoren sind Integrine von zentraler Bedeutung, da sie eine Verbindung zwischen dem Zytoskelett und der extrazellulären Matrix herstellen. Die Ergebnisse dieser Arbeit zeigen, daß Shear Stress die Expression der IntegrinUntereinheiten alpha5 und ß1, die zusammen den FibronektinRezeptor bilden, erhöht. Dabei konnte die Beteiligung von Stickstoffmonoxid (NO) und Wachstumsfaktoren, die durch Shear StressExposition freigesetzt werden und die Expression von Integrinen stimulieren, ausgeschlossen werden. Andere Integrine, wie z.B. der LamininRezeptor alpha6ß4, wurden durch Shear Stress nicht reguliert. Als physiologische Relevanz der Shear Stressinduzierten Integrin Expression wurde die Adhäsion von Endothelzellen erhöht. Weiterhin induzierte die Präexposition von Endothelzellen mit Shear Stress die Adhäsionsinduzierte Aktivierung der MAPKinase ERK1/2, die wichtige Überlebenssignale in Endothelzellen vermittelt. Zusammenfassend zeigen die Ergebnisse dieser Arbeit, daß Shear Stress die Expression der antiinflammatorischen Proteine Clusterin und TRAF3 sowie der Mechanotransduktoren Integrin alpha5 und ß1 erhöht. Die Hemmung der Komplement und CD40induzierten Aktivierung von Endothelzellen durch Shear Stress ist von Bedeutung, um sowohl der Initiation als auch der Progression der Atherosklerose entgegen zu wirken. Die Shear Stressinduzierte Adhäsion, die über die Stimulation der Expression des FibronektinRezeptors alpha5ß1 vermittelt wird, ist eine wichtige Voraussetzung für die Mechanotransduktion von Shear Stress und das Überleben von Endothelzellen. Die Identifizierung und Aufklärung atheroprotektiver Mechanismen, die durch die laminare Schubspannung des Blutes aktiviert werden, könnten dazu beitragen, die Integrität des Endothels und die Funktionalität der Blutgefäße im Rahmen der Atherosklerose zu schützen.
MAP kinase-dependent phosphorylation processes have been shown to interfere with the degradation of the antiapoptotic protein Bcl-2. The cytosolic MAP kinase phosphatase MAP kinase phosphatase-3 (MKP-3) induces apoptosis of endothelial cells in response to tumor necrosis factor alpha (TNFalpha) via dephosphorylation of the MAP kinase ERK1/2, leading to Bcl-2 proteolysis. Here we report that the endothelial cell survival factor nitric oxide (NO) down-regulated MKP-3 by destabilization of MKP-3 mRNA. This effect of NO was paralleled by a decrease in MKP-3 protein levels. Moreover, ERK1/2 was found to be protected against TNFalpha-induced dephosphorylation by coincubation of endothelial cells with the NO donor. Subsequently, both the decrease in Bcl-2 protein levels and the mitochondrial release of cytochrome c in response to TNFalpha were largely prevented by exogenous NO. In cells overexpressing MKP-3, no differences in phosphatase activity in the presence or absence of NO were found, excluding potential posttranslational modifications of MKP-3 protein by NO. These data demonstrate that upstream of the S-nitrosylation of caspase-3, NO exerts additional antiapoptotic effects in endothelial cells, which rely on the down-regulation of MKP-3 mRNA.