Refine
Year of publication
Document Type
- Preprint (305)
- Article (178)
- Conference Proceeding (8)
Language
- English (491)
Has Fulltext
- yes (491)
Is part of the Bibliography
- no (491)
Keywords
- Heavy Ion Experiments (13)
- Hadron-Hadron scattering (experiments) (11)
- Kollisionen schwerer Ionen (7)
- Quark-Gluon-Plasma (7)
- MEMOs (6)
- heavy ion collisions (6)
- Heavy-ion collision (5)
- quark-gluon-plasma (5)
- QGP (4)
- LHC (3)
Institute
- Physik (491)
- Frankfurt Institute for Advanced Studies (FIAS) (401)
- Informatik (374)
- Hochschulrechenzentrum (1)
The extension of the Periodic System into hitherto unexplored domains - anti- matter and hypermatter - is discussed. Starting from an analysis of hyperon and single hypernuclear properties we investigate the structure of multi-hyperon objects (MEMOs) using an extended relativistic meson field theory. These are contrasted with multi-strange quark states (strangelets). Their production mechanism is stud- ied for relativistic collisions of heavy ions from present day experiments at AGS and SPS to future opportunities at RHIC and LHC. It is pointed out that abso- lutely stable hypermatter is unlikely to be produced in heavy ion collisions. New attention should be focused on short lived metastable hyperclusters ( / 10 10s) and on intensity interferometry of multi-strange-baryon correlations.
Starting from a classical picture of shear viscosity we construct a steady velocity gradient in the partonic cascade BAMPS. Using the Navier-Stokes-equation we calculate the shear viscosity coefficient. For elastic isotropic scatterings we find a very good agreement with the analytic values. For both elastic and inelastic scatterings with pQCD cross sections we find good agreement with previously published calculations.
Dynamics of strange, charm and high momentum hadrons in relativistic nucleus nucleus collisions
(2003)
We investigate hadron production and attenuation of hadrons with strange and charm quarks (or antiquarks) as well as high transverse momentum hadrons in relativistic nucleus-nucleus col- lisions from 2 A·GeV to 21.3 A·TeV within two independent transport approaches (UrQMD and HSD). Both transport models are based on quark, diquark, string and hadronic degrees of freedom, but do not include any explicit phase transition to a quark-gluon plasma. From our dynamical calculations we find that both models do not describe the maximum in the K+/ + ratio at 20 - 30 A·GeV in central Au+Au collisions found experimentally, though the excitation functions of strange mesons are reproduced well in HSD and UrQMD. Furthermore, the transport calculations show that the charmonium recreation by D + J/ + meson reactions is comparable to the dissociation by comoving mesons at RHIC energies contrary to SPS energies. This leads to the final result that the total J/ suppression as a function of centrality at RHIC should be less than the suppression seen at SPS energies where the comover dissociation is substantial and the backward channels play no role. Furthermore, our transport calculations in comparison to exper- imental data on transverse momentum spectra from pp, d+Au and Au+Au reactions show that pre-hadronic e ects are responsible for both the hardening of the hadron spectra for low transverse momenta (Cronin e ect) as well as the suppression of high pT hadrons. The mutual interactions of formed hadrons are found to be negligible in central Au+Au collisions at s = 200 GeV for pT e 6 GeV/c and the sizeable suppression seen experimentally is attributed to a large extent to the interactions of leading pre-hadrons with the dense environment.
The physical processes behind the production of light nuclei in heavy ion collisions are unclear. The successful theoretical description of experimental yields by thermal models conflicts with the very small binding energies of the observed states, being fragile in such a hot and dense environment. Other available ideas are delayed production via coalescence, or a cooling of the system after the chemical freeze-out according to a Saha equation, or a ‘quench’ instead of a thermal freeze-out. A recently derived prescription of an (interacting) Hagedorn gas is applied to consolidate the above pictures. The tabulation of decay rates of Hagedorn states into light nuclei allows to calculate yields usually inaccessible due to very poor Monte Carlo statistics. Decay yields of stable hadrons and light nuclei are calculated. While the scale-free decays of Hagedorn states alone are not compatible with the experimental data, a thermalized hadron and Hagedorn state gas is able to describe the experimental data. Applying a cooling of the system according to a Saha-equation with conservation of nucleon and anti-nucleon numbers leads to (nearly) temperature independent yields, thus a production of the light nuclei at temperatures much lower than the chemical freeze-out temperature is compatible with experimental data and with the statistical hadronization model.
Measured hadron yields from relativistic nuclear collisions can be equally well understood in two physically distinct models, namely a static thermal hadronic source vs. a time-dependent, nonequilibrium hadronization o a quark-gluon plasma droplet. Due to the time-dependent particle evapora- tion o the hadronic surface in the latter approach the hadron ratios change (by factors of <H 5) in time. Final particle yields reflect time averages over the actual thermodynamic properties of the system at a certain stage of the evolution. Calculated hadron, strangelet and (anti-)cluster yields as well as freeze-out times are presented for di erent systems. Due to strangeness distillation the system moves rapidly out of the T, µq plane into the µs-sector. Classif.: 25.75.Dw, 12.38.Mh, 24.85.+p
We discuss the properties of two distinct forms of hypothetical strange matter, small lumps of strange quark matter (strangelets) and of hyperon matter (metastable exotic multihypernuclear objects: MEMOs), with special empha- sis on their relevance for present and future heavy ion experiments. The masses of small strangelets up to AB = 40 are calculated using the MIT bag model with shell mode filling for various bag parameters. The strangelets are checked for possible strong and weak hadronic decays, also taking into account multiple hadron decays. It is found that strangelets which are stable against strong decay are most likely highly negative charged, contrary to previous findings. Strangelets can be stable against weak hadronic decay but their masses and charges are still rather high. This has serious impact on the present high sensitivity searches in heavy ion experiments at the AGS and CERN facilities. On the other hand, highly charged MEMOs are predicted on the basis of an extended relativistic mean field model. Those objects could be detected in future experiments searching for short lived, rare composites. It is demonstrated that future experiments can be sensitive to a much wider variety of strangelets.
The stopping behaviour of baryons in massive heavy ion collisions ( s k 10AGeV) is investigated within di erent microscopic models. At SPS-energies the predictions range from full stopping to virtually total transparency. Experimental data are indicating strong stopping. The initial baryo-chemical potentials and temperatures at collider energies and their impact on the formation probability of strange baryon clusters and strangelets are discussed.
We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (Metastable Exotic Multihypernuclear Objects: MEMOs) and their relevance for present and future heavy ion searches. The strong and weak decays are discussed separately to distinguish between long-lived and short-lived candidates where the former ones are detectable in present heavy ion experiments while the latter ones in future heavy ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass to charge ratio like a anti deuteron (M/Z 2) but masses of A=10 to 16. We predict also many short-lived candidates, both in quark and in hadronic form, which can be highly charged. Purely hyperonic nuclei like the (2 02 ) are bound and have a negative charge while carrying a positive baryon number. We demonstrate also that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy ion colliders.